scholarly journals Evaluation of regional climate model simulated rainfall over Indonesia and its application for downscaling future climate projections

2019 ◽  
Vol 40 (4) ◽  
pp. 2026-2047 ◽  
Author(s):  
Ganesha T. Chandrasa ◽  
Alvaro Montenegro
2021 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Jason P. Evans ◽  
Alejandro Di Luca ◽  
Michael R. Grose ◽  
Vanessa Round ◽  
...  

<p>Coarse resolution global climate models (GCM) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, ‘realised added value’, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.</p>


2009 ◽  
Vol 22 (8) ◽  
pp. 1944-1961 ◽  
Author(s):  
Bariş Önol ◽  
Fredrick H. M. Semazzi

Abstract In this study, the potential role of global warming in modulating the future climate over the eastern Mediterranean (EM) region has been investigated. The primary vehicle of this investigation is the Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 3 (ICTP-RegCM3), which was used to downscale the present and future climate scenario simulations generated by the NASA’s finite-volume GCM (fvGCM). The present-day (1961–90; RF) simulations and the future climate change projections (2071–2100; A2) are based on the Intergovernmental Panel on Climate Change (IPCC) greenhouse gas (GHG) emissions. During the Northern Hemispheric winter season, the general increase in precipitation over the northern sector of the EM region is present both in the fvGCM and RegCM3 model simulations. The regional model simulations reveal a significant increase (10%–50%) in winter precipitation over the Carpathian Mountains and along the east coast of the Black Sea, over the Kackar Mountains, and over the Caucasus Mountains. The large decrease in precipitation over the southeastern Turkey region that recharges the Euphrates and Tigris River basins could become a major source of concern for the countries downstream of this region. The model results also indicate that the autumn rains, which are primarily confined over Turkey for the current climate, will expand into Syria and Iraq in the future, which is consistent with the corresponding changes in the circulation pattern. The climate change over EM tends to manifest itself in terms of the modulation of North Atlantic Oscillation. During summer, temperature increase is as large as 7°C over the Balkan countries while changes for the rest of the region are in the range of 3°–4°C. Overall the temperature increase in summer is much greater than the corresponding changes during winter. Presentation of the climate change projections in terms of individual country averages is highly advantageous for the practical interpretation of the results. The consistence of the country averages for the RF RegCM3 projections with the corresponding averaged station data is compelling evidence of the added value of regional climate model downscaling.


2021 ◽  
Author(s):  
Daniel Abel ◽  
Katrin Ziegler ◽  
Felix Pollinger ◽  
Heiko Paeth

<p>The European Regional Development Fund-Project BigData@Geo aims to create highly resolved climate projections for the model region of Lower Franconia in Bavaria, Germany. These projections are analyzed and made available to local stakeholders of agriculture, forestry, and viniculture as well as general public. Since regional climate models’ spatiotemporal resolution often is too coarse to deal with such local issues, the regional climate model REMO is improved within the frame of the project in cooperation with the Climate Service Center Germany (GERICS).</p><p>Accurate and highly resolved climate projections require realistic modeling of soil hydrology. Thus, REMO’s original bucket scheme is replaced by a 5-layer soil scheme. It allows for the representation of water below the root zone. Evaporation is possible solely from the top layer instead of the entire bucket and water can flow vertically between the layers. Consequently, the properties and processes change significantly compared to the bucket scheme. Both, the bucket and the 5-layer scheme, use the improved Arno scheme to separate throughfall into infiltration and surface runoff.</p><p>In this study, we examine if this scheme is suitable for use with the improved soil hydrology or if other schemes lead to better results. For this, we (1) modify the improved Arno scheme and further introduce the infiltration equations of (2) Philip as well as (3) Green and Ampt. First results of the comparison of these four different schemes and their influence on soil moisture and near-surface atmospheric variables are presented.</p>


2017 ◽  
Vol 8 (3) ◽  
pp. 199-211 ◽  
Author(s):  
Rupak Rajbhandari ◽  
Arun Bhakta Shrestha ◽  
Santosh Nepal ◽  
Shahriar Wahid ◽  
Guo-Yu Ren

2015 ◽  
Vol 29 (1) ◽  
pp. 17-35 ◽  
Author(s):  
J. F. Scinocca ◽  
V. V. Kharin ◽  
Y. Jiao ◽  
M. W. Qian ◽  
M. Lazare ◽  
...  

Abstract A new approach of coordinated global and regional climate modeling is presented. It is applied to the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) and its parent global climate model CanESM2. CanRCM4 was developed specifically to downscale climate predictions and climate projections made by its parent global model. The close association of a regional climate model (RCM) with a parent global climate model (GCM) offers novel avenues of model development and application that are not typically available to independent regional climate modeling centers. For example, when CanRCM4 is driven by its parent model, driving information for all of its prognostic variables is available (including aerosols and chemical species), significantly improving the quality of their simulation. Additionally, CanRCM4 can be driven by its parent model for all downscaling applications by employing a spectral nudging procedure in CanESM2 designed to constrain its evolution to follow any large-scale driving data. Coordination offers benefit to the development of physical parameterizations and provides an objective means to evaluate the scalability of such parameterizations across a range of spatial resolutions. Finally, coordinating regional and global modeling efforts helps to highlight the importance of assessing RCMs’ value added relative to their driving global models. As a first step in this direction, a framework for identifying appreciable differences in RCM versus GCM climate change results is proposed and applied to CanRCM4 and CanESM2.


2016 ◽  
Vol 48 (11-12) ◽  
pp. 3685-3705 ◽  
Author(s):  
Thierry C. Fotso-Nguemo ◽  
Derbetini A. Vondou ◽  
Clément Tchawoua ◽  
Andreas Haensler

2021 ◽  
Vol 945 (1) ◽  
pp. 012022
Author(s):  
Chin Kah Seng ◽  
Tan Kok Weng ◽  
Akihiko Nakayama

Abstract Climate change is one of the challenging global issues that our world is facing and it is intensely debated on the international agenda. It is a fact that climate change has brought about many disastrous events on a global scale which affect our livelihoods. Climate models are commonly used by researchers to study the magnitude of the changing climate and to simulate future climate projections. Most climate models are developed based on various interactions among the Earth’s climate components such as the land surface, oceans, atmosphere and sea-ice. In this study, the second-generation Canadian Earth System Model (CanESM2) was statistically downscaled to develop a regional climate model (RCM) based on three representative concentration pathways (RCPs): RCP2.6, RCP4.5 and RCP8.5. The RCM will be used to simulate the average minimum and maximum temperatures and average precipitation for Ipoh, Subang and KLIA Sepang in Peninsular Malaysia for the years 2006 to 2100. The simulated data were bias corrected using the historical observation data of monthly average minimum and maximum temperatures and monthly average rainfall retrieved from the Malaysian Meteorological Department (MMD). The different trends of the simulated data for all the three locations based on the RCP2.6, RCP4.5 and RCP8.5 were evaluated for future climate projection.


2021 ◽  
Author(s):  
Christine Nam ◽  
Bente Tiedje ◽  
Susanne Pfeifer ◽  
Diana Rechid ◽  
Daniel Eggert

<p>Everyone, politicians, public administrations, business owners, and citizens want to know how climate changes will affect them locally. Having such knowledge offers everyone the opportunity to make informed choices and take action towards mitigation and adaptation.</p><p> </p><p>In order to develop locally relevant climate service products and climate advisory services, as we do at GERICS, we must extract localized climate change information from Regional Climate Model ensemble simulations.</p><p> </p><p>Common challenges associated with developing such services include the transformation of petabytes of data from physical quantities such as precipitation, temperature, or wind, into user-applicable quantities such as return periods of heavy precipitation, e.g. for legislative or construction design frequency. Other challenges include the technical and physical barriers in the use and interpretation of climate data, due to large data volume, unfamiliar software and data formats, or limited technical infrastructure. The interpretation of climate data also requires scientific background knowledge, which limit or influence the interpretation of results.</p><p> </p><p>These barriers hinder the efficient and effective transformation of big data into user relevant information in a timely and reliable manner. To enable our society to adapt and become more resilient to climate change, we must overcome these barriers. In the Helmholtz funded Digital Earth project we are tackling these challenges by developing a Climate Change Workflow.</p><p> </p><p>In the scope of this Workflow, the user can <span>easily define a region of interest and extract </span><span>the</span><span> relevant </span><span>climate data </span><span>from the simulations available </span><span>at</span><span> the Earth System Grid Federation (ESGF). Following which, </span><span>a general overview of the projected changes, in precipitation </span><span>for example, for multiple climate projections is presented</span><span>. It conveys the bandwidth, </span><span>i.e. </span><span>the minimum/maximum range by an ensemble of regional climate model projections. </span><span>We implemented the sketched workflow in a web-based tool called </span><span>The Climate Change Explorer. </span><span>It</span> addresses barriers associated with extracting locally relevant climate data from petabytes of data, in unfamilar data formats, and deals with interpolation issues, using a more intuitive and user-friendly web interface.</p><p> </p><p>Ultimately, the Climate Change Explorer provides concise information on the magnitude of projected climate change and the range of these changes for individually defined regions, such as found in GERICS ‘Climate Fact Sheets’. This tool has the capacity to also improve other workflows of climate services, allowing them to dedicate more time in deriving user relevant climate indicies; enabling politicians, public administrations, and businesses to take action.</p>


Sign in / Sign up

Export Citation Format

Share Document