scholarly journals Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections

2016 ◽  
Vol 121 (5) ◽  
pp. 2110-2129 ◽  
Author(s):  
Jianping Tang ◽  
Xiaorui Niu ◽  
Shuyu Wang ◽  
Hongxia Gao ◽  
Xueyuan Wang ◽  
...  
2021 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Jason P. Evans ◽  
Alejandro Di Luca ◽  
Michael R. Grose ◽  
Vanessa Round ◽  
...  

<p>Coarse resolution global climate models (GCM) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, ‘realised added value’, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.</p>


2018 ◽  
Vol 11 (1) ◽  
pp. 86-105 ◽  
Author(s):  
K. Ishida ◽  
A. Ercan ◽  
T. Trinh ◽  
S. Jang ◽  
M. L. Kavvas ◽  
...  

Abstract Impact of future climate change on watershed-scale precipitation was investigated over Northern California based on future climate projections by means of the dynamical downscaling approach. Thirteen different future climate projection realizations from two general circulation models (GCMs: ECHAM5 and CCSM3) based on four emission scenarios (SRES A1B, A1FI, A2, and B1) were dynamically downscaled to 9-km resolution grids over eight watersheds in Northern California for a period of 90 water years (2010–2100). Analysis of daily precipitation over the eight watersheds showed that precipitation values obtained from dynamical downscaling of the 1981 to 1999 control runs of ECHAM5 and CCSM3 GCMs compared well with the PRISM data. Long-term future trends of annual and seasonal basin-average precipitation were investigated. Although a large variability exists for the projected annual basin-average precipitation within each of the 13 individual realizations, there was no significant long-term trend over the eight study watersheds except for the downward trend in the A1FI scenario. On the other hand, significant upward and downward trends were detected in the seasonal basin-average precipitation except in the winter months (January, February, and March). The trend analysis results in this study indicated the importance of considering seasonal variability, scenario, and model uncertainty.


2021 ◽  
Vol 18 ◽  
pp. 99-114
Author(s):  
M. Bazlur Rashid ◽  
Syed Shahadat Hossain ◽  
M. Abdul Mannan ◽  
Kajsa M. Parding ◽  
Hans Olav Hygen ◽  
...  

Abstract. The climate of Bangladesh is very likely to be influenced by global climate change. To quantify the influence on the climate of Bangladesh, Global Climate Models were downscaled statistically to produce future climate projections of maximum temperature during the pre-monsoon season (March–May) for the 21st century for Bangladesh. The future climate projections are generated based on three emission scenarios (RCP2.6, RCP4.5 and RCP8.5) provided by the fifth Coupled Model Intercomparison Project. The downscaling process is undertaken by relating the large-scale seasonal mean temperature, taken from the ERA5 reanalysis data set, to the leading principal components of the observed maximum temperature at stations under Bangladesh Meteorological Department in Bangladesh, and applying the relationship to the GCM ensemble. The in-situ temperature data has only recently been digitised, and this is the first time they have been used in statistical downscaling of local climate projections for Bangladesh. This analysis also provides an evaluation of the local data, and the local temperatures in Bangladesh show a close match with the ERA5 reanalysis. Compared to the reference period of 1981–2010, the projected maximum pre-monsoon temperature in Bangladesh indicate an increase by 0.7/0.7/0.7 ∘C in the near future (2021–2050) and 2.2/1.2/0.8 ∘C in the far future (2071–2100) assuming the RCP8.5/RCP4.5/RCP2.6 scenario, respectively.


2020 ◽  
Vol 12 (4) ◽  
pp. 1283 ◽  
Author(s):  
Asim Khan ◽  
Manfred Koch ◽  
Adnan Tahir

Projecting future hydrology for the mountainous, highly glaciated upper Indus basin (UIB) is a challenging task because of uncertainties in future climate projections and issues with the coverage and quality of available reference climatic data and hydrological modelling approaches. This study attempts to address these issues by utilizing the semi-distributed hydrological model “Soil and water assessment tool” (SWAT) with new climate datasets and better spatial and altitudinal representation as well as a wider range of future climate forcing models (general circulation model/regional climate model combinations (GCMs_RCMs) from the “Coordinated Regional Climate Downscaling Experiment-South Asia (CORDEX-SA) project to assess different aspects of future hydrology (mean flows, extremes and seasonal changes). Contour maps for the mean annual flow and actual evapotranspiration as a function of the downscaled projected mean annual precipitation and temperatures are produced and can serve as a “hands-on” forecast tool of future hydrology. The overall results of these future SWAT hydrological projections indicate similar trends of changes in magnitudes, seasonal patterns and extremes of the UIB—stream flows for almost all climate scenarios/models/periods—combinations analyzed. In particular, all but one GCM_RCM model—the one predicting a very high future temperature rise—indicated mean annual flow increases throughout the 21st century, wherefore, interestingly, these are stronger for the middle years (2041–2070) than at its end (2071–2100). The seasonal shifts as well as the extremes follow also similar trends for all climate scenario/model/period combinations, e.g., an earlier future arrival (in May–June instead of July–August) of high flows and increased spring and winter flows, with upper flow extremes (peaks) projected to drastically increase by 50 to >100%, and with significantly decreased annual recurrence intervals, i.e., a tremendously increased future flood hazard for the UIB. The future low flows projections also show more extreme values, with lower-than-nowadays-experienced minimal flows occurring more frequently and with much longer annual total duration.


Author(s):  
Silvio Gualdi ◽  
Samuel Somot ◽  
Wilhelm May ◽  
Sergio Castellari ◽  
Michel Déqué ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document