scholarly journals Nonstationary influence of the North Atlantic tropical cyclones on the spatio‐temporal variability of the eastern United States precipitation extremes

2019 ◽  
Vol 40 (7) ◽  
pp. 3486-3499
Author(s):  
Nirajan Dhakal ◽  
Shaleen Jain

2020 ◽  
Vol 21 (7) ◽  
pp. 1425-1445 ◽  
Author(s):  
Alyssa M. Stansfield ◽  
Kevin A. Reed ◽  
Colin M. Zarzycki ◽  
Paul A. Ullrich ◽  
Daniel R. Chavas

AbstractTropical cyclones (TCs) can subject an area to heavy precipitation for many hours, or even days, worsening the risk of flooding, which creates dangerous conditions for residents of the U.S. East and Gulf Coasts. To study the representation of TC-related precipitation over the eastern United States in current-generation global climate models, a novel analysis methodology is developed to track TCs and extract their associated precipitation using an estimate of their dynamical outer size. This methodology is applied to three variable-resolution (VR) configurations of the Community Atmosphere Model, version 5 (CAM5), with high-resolution domains over the North Atlantic and one low-resolution conventional configuration, as well as to a combination of reanalysis and observational precipitation data. Metrics and diagnostics such as TC counts, intensities, outer storm sizes, and annual mean total and extreme precipitation are compared between the CAM5 simulations and reanalysis/observations. The high-resolution VR configurations outperform the global low-resolution configuration for all variables in the North Atlantic. Realistic TC intensities are produced by the VR configurations. The total North Atlantic TC counts are lower than observations but better than reanalysis.



2021 ◽  
Author(s):  
Sylvia Stinnett ◽  
Joshua Durkee ◽  
Joshua Gilliland ◽  
Victoria Murley ◽  
Alan Black ◽  
...  

<p>The North Atlantic Oscillation (NAO) is a high-frequency oscillation that has known influences on the climatology of weather patterns across the eastern United States. This study explores the relationship between the daily North Atlantic Oscillation index with observed high-wind events from 391 first-order weather stations across the eastern U.S. from 1973-2015. These events were determined following typical National Weather Service high-wind criteria: sustained winds of at least 18 m•s-1 for at least 1 hour or a wind gust of at least 26 m•s-1 for any duration. Since research literature shows high-wind events are often connected to parent mid-latitude cyclone tracks, and since the NAO has been shown to influence these storm tracks, it is hypothesized that changes in NAO phases are connected to spatial shifts and frequencies in high-wind observations. Initial results show a preferred southwesterly direction during each NAO phase. Variance in high-wind directions appears to increase (decrease) during negative (positive) NAO phases. Further, the greatest spatial difference in the mean center of high-wind observations was between positive and negative NAO phases. Overall, these preliminary findings indicate changes in high-wind observations may be linked to NAO phases.</p>



2017 ◽  
Author(s):  
David Piper ◽  
Michael Kunz

Abstract. Comprehensive lightning statistics are presented for a large, contiguous domain covering several European countries such as France, Germany, Austria, or Switzerland. Spatio-temporal variability of convective activity is investigated based on a 14-year time series (2001–2014) of lightning data. Based on the binary variable thunderstorm day, the mean spatial patterns of lightning activity and regional peculiarities regarding seasonality are discussed. Diurnal cycles are compared among several regions and evaluated with respect to major seasonal changes. Further analyzes are performed regarding interannual variability and the impact of teleconnection patterns on convection. Mean convective activity across central Europe is characterized by a strong northwest-to-southeast gradient with pronounced secondary features superimposed. The zone of maximum values of thunderstorm days propagates southwestward along the southern Alpine range from April to July. Diurnal cycles vary substantially both between different months and regions, particularly regarding the incidence of nighttime lightning. The North Atlantic Oscillation (NAO) is shown to have a significant impact on convective activity in several regions, pointing to a crucial role of large-scale flow in steering spatio-temporal patterns of convective activity.



Author(s):  
Venugopal Thandlam ◽  
Anna Rutgersson ◽  
Erik Sahlee

AbstractWe study the spatio-temporal variability of Atmospheric Rivers (ARs) and associated integrated water vapor and atmospheric parameters over the Euro-Atlantic region using long-term reanalysis datasets. Winds, temperature, and specific humidity at different pressure levels during 1979–2018 are used to study the water vapor transport integrated between 1000 and 300 hPa (IVT300) in mapping ARs. The intensity of ARs in the North Atlantic has been increasing in recent times (2009–2018) with large decadal variability and poleward shift (~ 5° towards the North) in landfall during 1999–2018. Though different reanalysis datasets show similar spatial patterns of IVT300 in mapping ARs, bias in specific humidity and wind components led to IVT300 mean bias of 50 kg m−1 s−1 in different reanalysis products compared to ERA5. The magnitude of winds and specific humidity in the lower atmosphere (below 750 hPa) dominates the total column water vapor and intensity of ARs in the North Atlantic. Reanalysis datasets in the central North Atlantic show an IVT300 standard deviation of 200 kg m−1 s−1 which is around 33% of the ARs climatology (~ 600 kg m−1 s−1). Though ARs have a higher frequency of landfalling over Western Europe in winter half-year, the intensity of IVT300 in winter ARs is 3% lower than the annual mean. The lower frequency of ARs in the summer half-year shows 3% higher IVT300 than the annual mean. While ARs in the North Atlantic show a strong decadal change in frequency and path, the impact of the North Atlantic Oscillation (NAO) and Scandinavian blocking on the location of landfall of ARs are significant. Furthermore, there is a strong latitudinal dependence of the source of moisture flux in the open ocean, contributing to the formation and strengthening ARs.





2018 ◽  
Vol 133 ◽  
pp. 304-311 ◽  
Author(s):  
Noelia Ríos ◽  
João P.G.L. Frias ◽  
Yasmina Rodríguez ◽  
Rita Carriço ◽  
Sofia M. Garcia ◽  
...  


1951 ◽  
Vol 5 (4) ◽  
pp. 825-832

With the development of certain administrative frictions (concerning coal quotas, occupation costs, and the scrap metal treaty) between the western occupying powers and the German Federal Republic, early indications were that if the talk of “contractual agreements” did materialize it would reserve, for the occupying powers, wide controls over important areas of west Germany's internal and external affairs. In Washington, however, a general modification of approach was noted during the September discussions between the United States Secretary of State (Acheson), the United Kingdom Foreign Secretary (Morrison), and the French Foreign Minister (Schuman), preparatory to the Ottawa meetings of the North Atlantic Council.



2017 ◽  
Vol 51 (3) ◽  
pp. 221-242 ◽  
Author(s):  
S. J. Rahmat ◽  
I. A. Koretsky ◽  
J. E. Osborne ◽  
A. A. Alford

Abstract The Family Phocidae includes four subfamilies (Phocinae, Monachinae, Cystophorinae, and Devinophocinae) consisting of mediumto large-sized mammals that possess distinctive adaptations to semi-aquatic life. In the Miocene of the Chesapeake Group, only two subfamilies of the Family Phocidae were identified: Phocinae and Monachinae. Leptophoca, a representative of the subfamily Phocinae, appears on the eastern shore of the North Atlantic around 16 million years ago. Recently, two new monachine species, the larger Terranectes magnus (n. gen., n. sp.) and the medium-sized T. parvus (n. sp.), were recorded in the Upper Miocene of the Chesapeake Group in the Eastover Formation (7.0–6.0 Ma) and St. Marys Formation (10.0-8.0 Ma). These two distinct subfamilies of seals indicate a well-marked divergence between phocines and monachines, much earlier than 18 million years ago, as previously suggested. The Eastover Formation was deposited in a shallow embayment that covered southern Maryland, the coastal plain of Virginia, and the northeastern corner of North Carolina. The geologically older St. Marys Formation represents a tide-influenced coastal environment, with low-salinity estuaries. There was a sharp temperature decrease in the Late Miocene, indicated by a shift to a cooler-water fish fauna during St. Marys time. The Eastover Formation reflects warmer waters with relatively strong currents, significant shoals, barriers, and varied depths. Fossil evidence of earlier seals suggests that phocids originated in the North Atlantic and otarioids in the North Pacific. True seals diverged from ancient Carnivora in the early Oligocene (or earlier) in the Paratethyan / Mediterranean Basins, spread widely during the Middle Miocene and crossed westward across the Atlantic Ocean, before dispersing in the eastern United States by the Early Pliocene.



Sign in / Sign up

Export Citation Format

Share Document