Changes in seasonal mean maximum air temperature in Romania and their connection with large-scale circulation

2002 ◽  
Vol 22 (10) ◽  
pp. 1181-1196 ◽  
Author(s):  
Rodica Tomozeiu ◽  
Aristita Busuioc ◽  
Sabina Stefan
Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 144 ◽  
Author(s):  
Rui Zhang ◽  
Zongxue Xu ◽  
Depeng Zuo ◽  
Chunguang Ban

Climate change poses potential challenges to sensitive areas, such as high-elevation regions. The Yarlung Zangbo River (YLZR) basin is located in the southeast of the Qinghai-Tibetan Plateau. It contains large amounts of snow and numerous glaciers that are vulnerable to climate change. Based on daily observational data at 17 meteorological stations in and around the YLZR basin during 1957–2015, the variability of precipitation, air temperature, and streamflow were analyzed. The nonparametric Mann–Kendall test, Sen’s slope estimate method, cross wavelet transform (XWT), and wavelet coherence (WTC) were used to identify the annual seasonal trends. the abrupt changes of precipitation and air temperature, and their associations with large-scale circulation. The results showed that the YLZR basin experienced an overall rapid warming and wetting during the study period, with an average warming rate of 0.33 °C/10 a and wetting rate of 4.25 mm/10a, respectively. Abrupt change points in precipitation and air temperature occurred around the 1970s and 1990s, respectively. The abrupt change points of three hydrological stations occurred around the late 1960s and the late 1990s, respectively. The precipitation, annual average temperature, and the streamflow of the three hydrological stations were negatively correlated with the Pacific decadal oscillation (PDO) and the multivariate El Niño-Southern Oscillation (ENSO) index (MEI), reaching a significant level of 0.05.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yahya Darmawan ◽  
Huang-Hsiung Hsu ◽  
Jia-Yuh Yu

This study aims to explore the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island. Further, the impact of varying the Asian–Australian Monsoon (AAM) was investigated for triggering the precipitation variability over the study area. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Anaysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were mostly supported by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. In the dry years (wet years), there is a strengthening (weakening) of the descent motion, which triggers a reduction (increase) of convection over the study area. The overall downward (upward) motion of westerly (easterly) winds appears to suppress (support) the convection and lead to negative (positive) precipitation anomaly in the whole region but with the largest anomaly over northern parts of Sumatra. The AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies the precipitation variability over the northern part of Sumatra Island as a regional phenomenon. The large-scale tropical circulation is possibly related to the PWC modulation (Pacific Walker Circulation).


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Arkadiusz M. Tomczyk ◽  
Ewa Bednorz ◽  
Katarzyna Szyga-Pluta

The primary objective of the paper was to characterize the climatic conditions in the winter season in Poland in the years 1966/67–2019/20. The study was based on daily values of minimum (Tmin) and maximum air temperature (Tmax), and daily values of snow cover depth. The study showed an increase in both Tmin and Tmax in winter. The most intensive changes were recorded in north-eastern and northern regions. The coldest winters were recorded in the first half of the analyzed multiannual period, exceptionally cold being winters 1969/70 and 1984/85. The warmest winters occurred in the second half of the analyzed period and among seasons with the highest mean Tmax, particularly winters 2019/20 and 1989/90 stood out. In the study period, a decrease in snow cover depth statistically significant in the majority of stations in Poland was determined, as well as its variability both within the winter season and multiannual.


2021 ◽  
Author(s):  
Alexander John Doyle ◽  
Thorwald Hendrik Matthias Stein ◽  
Andrew Turner

Author(s):  
Susanne Horn ◽  
Peter J. Schmid ◽  
Jonathan M. Aurnou

Abstract The large-scale circulation (LSC) is the most fundamental turbulent coherent flow structure in Rayleigh-B\'enard convection. Further, LSCs provide the foundation upon which superstructures, the largest observable features in convective systems, are formed. In confined cylindrical geometries with diameter-to-height aspect ratios of Γ ≅ 1, LSC dynamics are known to be governed by a quasi-two-dimensional, coupled horizontal sloshing and torsional (ST) oscillatory mode. In contrast, in Γ ≥ √2 cylinders, a three-dimensional jump rope vortex (JRV) motion dominates the LSC dynamics. Here, we use dynamic mode decomposition (DMD) on direct numerical simulation data of liquid metal to show that both types of modes co-exist in Γ = 1 and Γ = 2 cylinders but with opposite dynamical importance. Furthermore, with this analysis, we demonstrate that ST oscillations originate from a tilted elliptical mean flow superposed with a symmetric higher order mode, which is connected to the four rolls in the plane perpendicular to the LSC in Γ = 1 tanks.


Sign in / Sign up

Export Citation Format

Share Document