Responses of barley to hypoxia and salinity during seed germination, nutrient uptake, and early plant growth in solution culture

2012 ◽  
Vol 175 (4) ◽  
pp. 630-640 ◽  
Author(s):  
Serap Kırmızı ◽  
Richard W. Bell
1973 ◽  
Vol 21 (4) ◽  
pp. 263-268
Author(s):  
L.K. Wiersum

In solution culture experiments with tomatoes, lowering the N, P, K and Ca concentration resulted in a higher relative rate of nutrient uptake, as did restricting the transpiration rate. In sand culture experiments on the effect of N concentration, N at 83 or 103 mg/l resulted in well grown plants but N at 48 mg/l in small plants. In another similar experiment in dry or moist air K uptake was less at the lower transpiration rate, but plant growth was little affected. Data are also tabulated on the relative rates of uptake and percentage utilization of the total supply of N, P and K in sand and solution culture. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2021 ◽  
Vol 9 (8) ◽  
pp. 1647
Author(s):  
Gui-E Li ◽  
Wei-Liang Kong ◽  
Xiao-Qin Wu ◽  
Shi-Bo Ma

Phytase plays an important role in crop seed germination and plant growth. In order to fully understand the plant growth-promoting mechanism by Rahnella aquatilis JZ-GX1,the effect of this strain on germination of maize seeds was determined in vitro, and the colonization of maize root by R. aquatilis JZ-GX1 was observed by scanning electron microscope. Different inoculum concentrations and Phytate-related soil properties were applied to investigate the effect of R. aquatilis JZ-GX1 on the growth of maize seedlings. The results showed that R. aquatilis JZ-GX1 could effectively secrete indole acetic acid and had significantly promoted seed germination and root length of maize. A large number of R. aquatilis JZ-GX1 cells colonized on the root surface, root hair and the root interior of maize. When the inoculation concentration was 107 cfu/mL and the insoluble organophosphorus compound phytate existed in the soil, the net photosynthetic rate, chlorophyll content, phytase activity secreted by roots, total phosphorus concentration and biomass accumulation of maize seedlings were the highest. In contrast, no significant effect of inoculation was found when the total P content was low or when inorganic P was sufficient in the soil. R. aquatilis JZ-GX1 promotes the growth of maize directly by secreting IAA and indirectly by secreting phytase. This work provides beneficial information for the development and application of R. aquatilis JZ-GX1 as a microbial fertilizer in the future.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


Sign in / Sign up

Export Citation Format

Share Document