scholarly journals The short‐lived inhibitory effect of Brachiaria humidicola on nitrous oxide emissions following sheep urine application in a highly nitrifying soil

Author(s):  
Yan Ma ◽  
Alice F. Charteris ◽  
Nadine Loick ◽  
Laura M. Cardenas ◽  
Zhipeng Sha ◽  
...  
2008 ◽  
Vol 48 (2) ◽  
pp. 147 ◽  
Author(s):  
Coby J. Hoogendoorn ◽  
Cecile A. M. de Klein ◽  
Alison J. Rutherford ◽  
Selai Letica ◽  
Brian P. Devantier

Urine deposited by grazing animals represents the largest source of N2O emissions in New Zealand. Sheep-grazed hill pastures are an important component of New Zealand pastoral land, but information on N2O emissions from these areas is limited. The purpose of this study was to investigate the effect of increasing rates of fertiliser nitrogen and of a nitrification inhibitor on N2O emissions from urine patches. The study was carried out in grazed paddock-scale trials at the Ballantrae and Invermay Research Stations, New Zealand. The fertiliser N treatments were 0, 100, 300 and 750 (500 for Invermay) kg N/ha.year. Nitrous oxide measurements were conducted in the spring of 2005 and 2006, following applications of synthetic sheep urine with or without dicyandiamide (DCD) in these four N treatments. In both years and at both sites, N2O emissions increased with N fertiliser application rate in both urine and non-urine affected areas. The addition of DCD to the synthetic urine reduced N2O emissions from the urine affected areas during the measurement period by 60–80% at Ballantrae and by 40% at Invermay. The N2O emission factors for the artificial sheep urine (expressed as N2O-N lost as % of N applied) ranged from 0.01 to 1.06%, with the higher values generally found in the high N fertiliser treatments. The N2O emission factors were generally less than or similar to those from sheep urine applied to flat land pasture.


2018 ◽  
Vol 54 (6) ◽  
pp. 717-730 ◽  
Author(s):  
Hong Pan ◽  
Shanshan Ying ◽  
Haiyang Liu ◽  
Lingzao Zeng ◽  
Qichun Zhang ◽  
...  

2011 ◽  
Vol 37 (9) ◽  
pp. 1666-1675
Author(s):  
Hai-Ming TANG ◽  
Xiao-Ping XIAO ◽  
Wen-Guang TANG ◽  
Guang-Li YANG

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


Eos ◽  
2008 ◽  
Vol 89 (51) ◽  
pp. 529 ◽  
Author(s):  
Stephen J. Del Grosso ◽  
Tom Wirth ◽  
Stephen M. Ogle ◽  
William J. Parton

2021 ◽  
Author(s):  
Debasish Saha ◽  
Jason P. Kaye ◽  
Arnab Bhowmik ◽  
Mary Ann Bruns ◽  
John M. Wallace ◽  
...  

2021 ◽  
Author(s):  
Arezoo Taghizadeh-Toosi ◽  
Baldur Janz ◽  
Rodrigo Labouriau ◽  
Jørgen E. Olesen ◽  
Klaus Butterbach-Bahl ◽  
...  

2021 ◽  
Vol 156 ◽  
pp. 108197
Author(s):  
Hollie E. Emery ◽  
John H. Angell ◽  
Akaash Tawade ◽  
Robinson W. Fulweiler

Author(s):  
Muhammad Khalid Anser ◽  
Danish Iqbal Godil ◽  
Muhammad Azhar Khan ◽  
Abdelmohsen A. Nassani ◽  
Khalid Zaman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document