Noninvasive Determination of Protein Conformation in the Solid State Using Near Infrared (NIR) Spectroscopy

2005 ◽  
Vol 94 (9) ◽  
pp. 2030-2038 ◽  
Author(s):  
Shujun Bai ◽  
Rajiv Nayar ◽  
John F. Carpenter ◽  
Mark Cornell Manning
Detritus ◽  
2020 ◽  
pp. 62-66
Author(s):  
Xiaozheng Chen ◽  
Nils Kroell ◽  
Alexander Feil ◽  
Thomas Pretz

In food and medical packaging, multiple layers of different polymers are combined in order to achieve optimal functional properties for various applications. Flexible multilayer plastic packaging achieves a reduction in weight compared to other packaging products with the same function, saving material and in transportation costs. Recycling of post-industrial multilayer packaging was achieved by some companies, but the available technologies are limited to specific polymer types. For post-consumer waste, recycling of multilayer packaging has not been achieved yet. One of the main challenges in plastic sorting is that the detection and separation of multilayer packaging from other materials is not possible yet. In this study, the possibility to detect and sort flexible multilayer plastic packaging was investigated with near-infrared spectroscopy, which is the state-of-the-art technology for plastic sorting. The results show that from a detection and classification point of view, sorting of monolayer, two- and three-layers samples under laboratory conditions is possible. According to the captured data, the sequence of layers has little influence on the spectra. In case of glossy samples, the spectra are influenced by printed surfaces. With an increase in thickness, the spectra get more characteristic, which makes the classification easier. Our results indicate that the sorting of post-consumer multilayer plastic packaging by main composition is theoretically achievable.


2018 ◽  
Vol 6 (4) ◽  
pp. 147 ◽  
Author(s):  
Marta Lopes ◽  
Ana Amorim ◽  
Cecília Calado ◽  
Pedro Reis Costa

Harmful algal blooms are responsible worldwide for the contamination of fishery resources, with potential impacts on seafood safety and public health. Most coastal countries rely on an intense monitoring program for the surveillance of toxic algae occurrence and shellfish contamination. The present study investigates the use of near infrared (NIR) spectroscopy for the rapid in situ determination of cell concentrations of toxic algae in seawater. The paralytic shellfish poisoning (PSP) toxin-producing dinoflagellate Gymnodinium catenatum was selected for this study. The spectral modeling by partial least squares (PLS) regression based on the recorded NIR spectra enabled the building of highly accurate (R2 = 0.92) models for cell abundance. The models also provided a good correlation between toxins measured by the conventional methods (high-performance liquid chromatography with fluorescence detection (HPLC-FLD)) and the levels predicted by the PLS/NIR models. This study represents the first necessary step in investigating the potential of application of NIR spectroscopy for algae bloom detection and alerting.


2011 ◽  
Vol 49 (No. 11) ◽  
pp. 500-510 ◽  
Author(s):  
M. Prevolnik ◽  
M. Čandek-Potokar ◽  
D. Škorjanc

In contrast to conventional methods for the determination of meat chemical composition and quality, near infrared spectroscopy (NIRS) enables rapid, simple and simultaneous assessment of numerous meat properties. The present article is a review of published studies that examined the ability of NIRS to predict different meat properties. According to the published results, NIRS shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. On the other hand, NIRS is less accurate for predicting different attributes of meat quality. In view of meat quality evaluation, the use of NIRS appears more promising when categorizing meat into quality classes on the basis of meat quality traits for example discriminating between feeding regimes, discriminating fresh from frozen-thawed meat, discriminating strains, etc. The performance of NIRS to predict meat properties seems limited by the reliability of the method to which it is calibrated. Moreover, the use of NIRS may also be limited by the fact that it needs a laborious calibration for every purpose. In spite of that, NIRS is considered to be a very promising method for rapid meat evaluation.    


2020 ◽  
Vol 285 ◽  
pp. 150-174 ◽  
Author(s):  
George D. Cody ◽  
Michael Ackerson ◽  
Carolyn Beaumont ◽  
Dionysis Foustoukos ◽  
Charles Le Losq ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Mohd Yusop Nurida ◽  
Dolmat Norfadilah ◽  
Mohd Rozaiddin Siti Aishah ◽  
Chan Zhe Phak ◽  
Syafiqa M. Saleh

The analytical methods for the determination of the amine solvent properties do not provide input data for real-time process control and optimization and are labor-intensive, time-consuming, and impractical for studies of dynamic changes in a process. In this study, the potential of nondestructive determination of amine concentration, CO2 loading, and water content in CO2 absorption solvent in the gas processing unit was investigated through Fourier transform near-infrared (FT-NIR) spectroscopy that has the ability to readily carry out multicomponent analysis in association with multivariate analysis methods. The FT-NIR spectra for the solvent were captured and interpreted by using suitable spectra wavenumber regions through multivariate statistical techniques such as partial least square (PLS). The calibration model developed for amine determination had the highest coefficient of determination (R2) of 0.9955 and RMSECV of 0.75%. CO2 calibration model achieved R2 of 0.9902 with RMSECV of 0.25% whereas the water calibration model had R2 of 0.9915 with RMSECV of 1.02%. The statistical evaluation of the validation samples also confirmed that the difference between the actual value and the predicted value from the calibration model was not significantly different and acceptable. Therefore, the amine, CO2, and water models have given a satisfactory result for the concentration determination using the FT-NIR technique. The results of this study indicated that FT-NIR spectroscopy with chemometrics and multivariate technique can be used for the CO2 solvent monitoring to replace the time-consuming and labor-intensive conventional methods.


2019 ◽  
Vol 1 (2) ◽  
pp. 246-256
Author(s):  
Benjamaporn Matulaprungsan ◽  
Chalermchai Wongs-Aree ◽  
Pathompong Penchaiya ◽  
Phonkrit Maniwara ◽  
Sirichai Kanlayanarat ◽  
...  

Shredded cabbage is widely used in much ready-to-eat food. Therefore, rapid methods for detecting and monitoring the contamination of foodborne microbes is essential. Short wavelength near infrared (SW-NIR) spectroscopy was applied on two types of solutions, a drained solution from the outer surface of the shredded cabbage (SC) and a ground solution of shredded cabbage (GC) which were inoculated with a mixture of two bacterial suspensions, Escherichia coli and Salmonella typhimurium. NIR spectra of around 700 to 1100 nm were collected from the samples after 0, 4, and 8 h at 37 °C incubation, along with the growth of total bacteria, E. coli and S. typhimurium. The raw spectra were obtained from both sample types, clearly separated with the increase of incubation time. The first derivative, a Savitzky–Golay pretreatment, was applied on the GC spectra, while the second derivative was applied on the SC spectra before developing the calibration equation, using partial least squares regression (PLS). The obtained correlation (r) of the SC spectra was higher than the GC spectra, while the standard error of cross-validation (SECV) was lower. The ratio of prediction of deviation (RPD) of the SC spectra was higher than the GC spectra, especially in total bacteria, quite normal for the E. coli but relatively low for the S. typhimurium. The prediction results of microbial spoilage were more reliable on the SC than on the GC spectra. Total bacterial detection was best for quantitative measurement, as E. coli contamination could only be distinguished between high and low values. Conversely, S. typhimurium predictions were not optimal for either sample type. The SW-NIR shows the feasibility for detecting the existence of microbes in the solution obtained from SC, but for a more specific application for discrimination or quantitation is needed, proving further research in still required.


2016 ◽  
Vol 8 (23) ◽  
pp. 4584-4589 ◽  
Author(s):  
Longhui Ma ◽  
Zhimin Zhang ◽  
Xingbing Zhao ◽  
Sufeng Zhang ◽  
Hongmei Lu

NIR spectroscopy coupled with chemometric methods for rapid quantification of total polyphenols content and antioxidant activity inDendrobium officinale.


2013 ◽  
Vol 365-366 ◽  
pp. 737-740
Author(s):  
Li Jun Yao ◽  
Jie Mei Chen ◽  
Tao Pan

Near-infrared (NIR) spectroscopy combined with moving window partial least squares (MWPLS) method was successfully applied to the waveband selection for the rapid chemical-free determination of Zn2+ in soil. Based on randomness and similarity, an effective approach was performed to obtain objective and practical models. The optimal MWPLS waveband was 1136-1252 nm, and the corresponding optimal number of PLS factors was 6. The validation root mean square error (V-SEP) and validation correlation coefficients (V-RP) of prediction were 15.658 mg kg-1 and 0.925, respectively. The Zn2+ prediction values of the validation samples are close to the measured values. The results provided a reliable NIR model and can serve as valuable references for designing the dedicated spectroscopic instruments.


2014 ◽  
Vol 07 (06) ◽  
pp. 1450012 ◽  
Author(s):  
Qin Dong ◽  
Hengchang Zang ◽  
Lixuan Zang ◽  
Aihua Liu ◽  
Yanli Shi ◽  
...  

Hyaluronic acid (HA) concentration is an important parameter in fermentation process. Currently, carbazole assay is widely used for HA content determination in routine analysis. However, this method is time-consuming, environment polluting and has the risk of microbial contamination, as well as the results lag behind fermentation process. This paper attempted the feasibility to predict the concentration of HA in fermentation broth by using near infrared (NIR) spectroscopy in transmission mode. In this work, a total of 56 samples of fermentation broth from 7 batches were analyzed, which contained HA in the range of 2.35–9.69 g/L. Different data preprocessing methods were applied to construct calibration models. The final optimal model was obtained with first derivative using Savitzky–Golay smoothing (9 points window, second-order polynomial) and partial least squares (PLS) regression with leave-one-block-out cross validation. The correlation coefficient and Root Mean Square Error of prediction set is 0.98 and 0.43 g/L, respectively, which show the possibility of NIR as a rapid method for microanalysis and to be a promising tool for a rapid assay in HA fermentation.


Sign in / Sign up

Export Citation Format

Share Document