Raman characterization before and after rapid thermal annealing of CeO2 thin films grown by rf sputtering on (111) Si

2008 ◽  
Vol 40 (4) ◽  
pp. 401-404 ◽  
Author(s):  
Y. Guhel ◽  
M. T. Ta ◽  
J. Bernard ◽  
B. Boudart ◽  
J. C. Pesant
2016 ◽  
Vol 75 (8) ◽  
pp. 605-613
Author(s):  
W. S. Yoo ◽  
K. Kang ◽  
H. Nishigaki ◽  
N. Hasuike ◽  
H. Harima ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Tao-Hsing Chen ◽  
Tzu-Yu Liao

This study utilizes radio frequency magnetron sputtering (RF sputtering) to deposit GZO transparent conductive film and Ti thin film on the same corning glass substrate and then treats GZO/Ti thin film with rapid thermal annealing. The annealing temperatures are 300°C , 500°C, and 550°C, respectively. Ti:GZO transparent conductive oxide (TCO) thin films are deposited on glass substrates using a radio frequency magnetron sputtering technique. The thin films are then annealed at temperatures of 300°C, 500°C, and 550°C, respectively, for rapid thermal annealing. The effects of the annealing temperature on the optical properties, resistivity, and nanomechanical properties of the Ti:GZO thin films are then systematically explored. The results show that all of the annealed films have excellent transparency (~90%) in the visible light range. Moreover, the resistivity of the Ti:GZO films reduces with an increasing annealing temperature, while the carrier concentration and Hall mobility both increase. Finally, the hardness and Young’s modulus of the Ti:GZO thin films are both found to increase as the annealing temperature is increased.


1998 ◽  
Vol 546 ◽  
Author(s):  
Xin Zhang ◽  
Tong-Yi Zhang ◽  
Yitshak Zohar

AbstractThe residual stress in doped and undoped polysilicon films, before and after rapid thermal annealing (RTA), is investigated using both wafer-curvature and micro-rotating structures techniques. Microstructure characterization has been conducted as well to understand the mechanism of the stress evolution. The results show that the compressive residual stresses in undoped polysilicon films can be reduced or eliminated within a few seconds RTA. Surface nitridation and grain growth are identified as the mechanisms responsible for the stress evolution.


2003 ◽  
Vol 27 (11) ◽  
pp. 1083-1086 ◽  
Author(s):  
H. Ito ◽  
T. Kusunoki ◽  
H. Saito ◽  
S. Ishio

2020 ◽  
Vol 59 (10) ◽  
pp. 105503
Author(s):  
Wafaa Magdy ◽  
Ayaka Kanai ◽  
F. A. Mahmoud ◽  
E. T. El Shenawy ◽  
S. A. Khairy ◽  
...  

1996 ◽  
Vol 35 (Part 1, No. 8) ◽  
pp. 4220-4224 ◽  
Author(s):  
M. D. Kim ◽  
T. W. Kang ◽  
M. S. Han ◽  
T. W. Kim

1995 ◽  
Vol 387 ◽  
Author(s):  
M. J. O'Keefe ◽  
C. L. Cerny

AbstractPhysical vapor deposition of Group VI elements (Cr, Mo, W) can lead to the formation of a metastable A-15 crystal structure under certain processing conditions. Typically, a thermally induced transformation of the metastable A-15 structure into the equilibrium body centered cubic structure has been accomplished by conventional furnace annealing at T/Tm ≈ 0.3 from tens of minutes to several hours. In this study we report on the use of rapid thermal annealing to transform sputter deposited A- 15 crystal structure tungsten and chromium thin films into body centered cubic films within the same temperature range but at times on the order of one minute. The minimum annealing times and temperatures required for complete transformation of the A-15 phase into the BCC phase varied from sample to sample, indicating that the transformation was dependent on the film characteristics. The electrical resistivity of A-15 Cr and W films was measured before and after rapid thermal annealing and was found to significantly decrease after transformation into the body center cubic phase.


Sign in / Sign up

Export Citation Format

Share Document