scholarly journals Quantification of the nonlinear susceptibility of the hydrogen and deuterium stretch vibration for biomolecules in coherent Raman micro‐spectroscopy

Author(s):  
Dale Boorman ◽  
Iestyn Pope ◽  
Francesco Masia ◽  
Peter Watson ◽  
Paola Borri ◽  
...  
2021 ◽  
Vol 11 (3) ◽  
pp. 1002
Author(s):  
Xue Wang ◽  
Xinchao Lu ◽  
Chengjun Huang

By eliminating the photodamage and photobleaching induced by high intensity laser and fluorescent molecular, the label-free laser scanning microscopy shows powerful capability for imaging and dynamic tracing to biological tissues and cells. In this review, three types of label-free laser scanning microscopies: laser scanning coherent Raman scattering microscopy, second harmonic generation microscopy and scanning localized surface plasmon microscopy are discussed with their fundamentals, features and recent progress. The applications of label-free biological imaging of these laser scanning microscopies are also introduced. Finally, the performance of the microscopies is compared and the limitation and perspectives are summarized.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1225
Author(s):  
Ali Atta ◽  
Mostufa M. Abdelhamied ◽  
Ahmed M. Abdelreheem ◽  
Mohamed R. Berber

In order to potentiate implementations in optical energy applications, flexible polymer composite films comprising methyl cellulose (MC), polyaniline (PANI) and silver nanoparticles (AgNPs) were successfully fabricated through a cast preparation method. The composite structure of the fabricated film was confirmed by X-ray diffraction and infrared spectroscopy, indicating a successful incorporation of AgNPs into the MC/PANI blend. The scanning electron microscope (SEM) images have indicated a homogenous loading and dispersion of AgNPs into the MC/PANI blend. The optical parameters such as band gap (Eg), absorption edge (Ed), number of carbon cluster (N) and Urbach energy (Eu) of pure MC polymer, MC/PANI blend and MC/PANI/Ag films were determined using the UV optical absorbance. The effects of AgNPs and PANI on MC polymer linear optical (LO) and nonlinear optical (NLO) parameters including reflection extinction coefficient, refractive index, dielectric constant, nonlinear refractive index, and nonlinear susceptibility are studied. The results showed a decrease in the band gap of MC/PANI/AgNPs compared to the pure MC film. Meanwhile, the estimated carbon cluster number enhanced with the incorporation of the AgNPs. The inclusion of AgNPs and PANI has enhanced the optical properties of the MC polymer, providing a new composite suitable for energy conversion systems, solar cells, biosensors, and nonlinear optical applications.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5798
Author(s):  
Amir Reza Sadrolhosseini ◽  
Ganesan Krishnan ◽  
Suhaidi Shafie ◽  
Suraya Abdul Rashid ◽  
Sulaiman Wadi Harun

This study used the carbon dots solution for the laser ablation technique to fabricate silver nanoparticles. The ablation time range was from 5 min to 20 min. Analytical methods, including Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy, transmission electron microscopy, and Raman spectroscopy were used to categorize the prepared samples. The UV-visible and z-scan techniques provided optical parameters such as linear and nonlinear refractive indices in the range of 1.56759 to 1.81288 and 7.3769 × 10−10 cm2 W−1 to 9.5269 × 10−10 cm2 W−1 and the nonlinear susceptibility was measured in the range of 5.46 × 10−8 to 6.97 × 10−8 esu. The thermal effusivity of prepared samples, which were measured using the photoacoustic technique, were in the range of 0.0941 W s1/2 cm−2 K−1 to 0.8491 W s1/2 cm−2 K−1. The interaction of the prepared sample with fluoride was investigated using a Raman spectrometer. Consequently, the intensity of the Raman signal decreased with the increasing concentration of fluoride, and the detection limit is about 0.1 ppm.


2018 ◽  
Vol 27 (01) ◽  
pp. 1850003 ◽  
Author(s):  
Mohamadreza Soltani

Here, we propose a novel plasmonic structure, called asymmetric plasmonic nanocavity grating (APNCG), which is shown to dramatically enhance nonlinear optical process of second harmonic generation (SHG). The proposed structure consists of two different metals on both sides of lithium niobate and a thin layer of graphene. By using two different metals the nonlinear susceptibility of the waveguide would be increased noticeably causing to increase SHG. On the other hand, it consists of two identical gratings on one side. By two identical gratings, the pump beam is coupled to two opposing SPP waves, which interfere with each other and result in SPP standing wave in the region between the two gratings. The distance between two gratings will be optimized to reach the highest SHG. It will be shown that by optimizing the geometry of proposed structure and using different metals, field enhancement in APNCG waveguides can result in large enhancement of SHG.


1995 ◽  
Vol 392 ◽  
Author(s):  
Xiaoguang Yang ◽  
Duncan McBranch ◽  
Basil Swanson ◽  
Dequan Li

AbstractThe design and synthesis of a family of calix[4]arene-based nonlinear optical (NLO) chromophores are discussed. The calixarene chromophores are macrocyclic compounds consisting of four simple D-π-A units bridged by methylene groups. These molecules were synthesized such that four D-π-A units of the calix[4]arene were aligned along the same direction with the calixarene in a cone conformation. These nonlinear optical super-chromophores were subsequently fabricated into covalently bound self-assembled monolayers on the surfaces of fused silica and silicon. Spectroscopic second harmonic generation (SHG) measurements were carried out to determine the absolute value of the dominant element of the second-order nonlinear susceptibility, d33, and the average molecular alignment, ψ. We find a value of d33 = 60 pm/V at a fundamental wavelength of 890 nm, and ψ˜ 36° with respect to the surface normal.


Sign in / Sign up

Export Citation Format

Share Document