Yeast population dynamics during spontaneous fermentation of icewine and selection of indigenous Saccharomyces cerevisiae strains for the winemaking in Qilian, China

2020 ◽  
Vol 100 (15) ◽  
pp. 5385-5394
Author(s):  
Li Feng ◽  
Jiaming Wang ◽  
Dongqing Ye ◽  
Yuyang Song ◽  
Yi Qin ◽  
...  
Fermentation ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 43
Author(s):  
Nadine Feghali ◽  
Angela Bianco ◽  
Giacomo Zara ◽  
Edouard Tabet ◽  
Chantal Ghanem ◽  
...  

In order to select Saccharomyces cerevisiae starter strains for ‘‘Merwah’’ wine production, three strains (M.6.16, M.10.16, and M.4.17) previously isolated from ‘‘Merwah’’ must and characterized at the lab scale were tested in pilot-scale fermentation in a Lebanese winery during the 2019 vintage. The three inoculated musts were compared to that obtained with a spontaneous fermentation. During the fermentations, must samples were taken to evaluate the dominance of the inoculated strains, and at the end of fermentation, the obtained wines were subjected to chemical and sensorial characterization. Molecular monitoring by interdelta analysis revealed that only M.4.17 was able to complete the fermentation and dominate over the wild yeasts. Based on the analysis of principal technological parameters (i.e., residual sugar, fermentative vigor, sulfur production, and acetic acid) and sensorial analysis of the wines obtained, M.4.17 was selected as an adequate starter for the production of typical ‘‘Merwah’’ wine.


2009 ◽  
Vol 59 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Huihui Sun ◽  
Huiqin Ma ◽  
Meiling Hao ◽  
Isak S. Pretorius ◽  
Shangwu Chen

Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 31
Author(s):  
Pilar Blanco ◽  
María Vázquez-Alén ◽  
Teresa Garde-Cerdán ◽  
Mar Vilanova

Yeast plays an essential role in winemaking. Saccharomyces cerevisiae strains involved in fermentation determine the chemical and sensory characteristics of wines. S. cerevisiae XG3, isolated in Galicia (NW Spain), has desirable oenological potential, which has been proved at a pilot scale to produce quality wines. This study applies XG3 as active dry yeast at an industrial scale for Treixadura wine elaboration, and compares it with commercial yeast and spontaneous fermentation within three wineries included in Denomination of Origin Ribeiro over two vintages. Fermentations are monitored using conventional methods, and microbiological implantation controls are carried out by mtDNA-RFLPs analysis. Wine basic chemical parameters are determined using OIV official methodology, and volatile aroma compounds are determined by GC-MS. Finally, wine sensory analysis is also performed. S. cerevisiae XG3 shows an acceptable implantation ability—as compared to commercial control strains. The wines from XG3 have a higher total acidity and lower alcohol content. Their volatile composition differs from control wines, since XG3 produces significantly higher concentrations of acetates, volatile acids, esters and volatile phenols, depending on the vintage and winery. However, lower differences are perceived at the sensory level, where fruity and floral descriptors are perceived by the panellists in XG3 wines. Therefore, XG3 constitutes an alternative to differentiate Treixadura wines.


2012 ◽  
Vol 66 (9) ◽  
Author(s):  
Hana Šuranská ◽  
Dana Vránová ◽  
Jiřina Omelková ◽  
Renáta Vadkertiová

AbstractIn enology, yeasts play an important role in the characteristics of the final product. They are predominant in the biochemical interaction with components of must. Rapid identification of the yeast population is necessary for fermentation process monitoring and for obtaining a good quality wine. The main goal of this study was the isolation and characterisation of the yeast microbial community naturally present on grape berries, leaves and occurring during the spontaneous fermentation process of the white wine Veltlin green from the South Moravian region, Czech Republic. The results, based on PCR-RFLP of the 5.8S-ITS region of rDNA, PCR-fingerprinting using microsatellite oligonucleotide primers (GAG)5, (GTG)5, (GAC)5, and M13 primer, showed great diversity of the yeast population. Including grape berries and fermented must, the following yeast species were identified: Hanseniaspora uvarum, Aureobasidium pullulans, Metschnikowia pulcherrima, Torulaspora delbrueckii, a number of Pichia species such as P. fermentans, P. membranifaciens, P. kluyveri, also Sporidiobolus salmonicolor, Rhodosporidium toruloides, Rhodotorula mucilaginosa, Rhodotorula glutinis as well as Saccharomyces cerevisiae and Saccharomyces bayanus. Monitoring of the yeast strains during the wine fermentation process of traditional Moravian wine can contribute to the improvement of wine quality.


1986 ◽  
Vol 6 (11) ◽  
pp. 3847-3853
Author(s):  
K Struhl

his3 and pet56 are adjacent Saccharomyces cerevisiae genes that are transcribed in opposite directions from initiation sites that are separated by 200 base pairs. Under normal growth conditions, in which his3 and pet56 are transcribed at similar basal levels, a poly(dA-dT) sequence located between the genes serves as the upstream promoter element for both. In contrast, his3 but not pet56 transcription is induced during conditions of amino acid starvation, even though the critical regulatory site is located upstream of both respective TATA regions. Moreover, only one of the two normal his3 initiation sites is subject to induction. From genetic and biochemical evidence, I suggest that the his3-pet56 intergenic region contains constitutive and inducible promoters with different properties. In particular, two classes of TATA elements, constitutive (Tc) and regulatory (Tr), can be distinguished by their ability to respond to upstream regulatory elements, by their effects on the selection of initiation sites, and by their physical structure in nuclear chromatin. Constitutive and inducible his3 transcription is mediated by distinct promoters representing each class, whereas pet56 transcription is mediated by a constitutive promoter. Molecular mechanisms for these different kinds of S. cerevisiae promoters are proposed.


Sign in / Sign up

Export Citation Format

Share Document