Effect of in-season calcium applications on cell wall physicochemical properties of nectarine fruit (Prunus persica var.nectarina Ait. Maxim) after harvest or cold storage

2006 ◽  
Vol 86 (15) ◽  
pp. 2597-2602 ◽  
Author(s):  
George A Manganaris ◽  
Miltiadis Vasilakakis ◽  
Grigorios Diamantidis ◽  
Ilaria Mignani
2008 ◽  
Vol 14 (4) ◽  
pp. 385-391 ◽  
Author(s):  
G.A. Manganaris ◽  
M. Vasilakakis ◽  
I. Mignani ◽  
A. Manganaris

A comparative study between melting flesh peach fruit (Prunus persica L. Batsch cvs. Royal Glory and Morettini No 2) with contrasting tissue firmness during their on-tree ripening was conducted. Such fruit were cold stored (0 °C) for 4 and 6 weeks, and subsequently transferred at 25 °C (shelf life) for up to 5 days and evaluated for quality attributes and cell wall physicochemical properties. Data were partly unexpected, since fruit of the soft cultivar (Morettini No 2) were characterized by lower exo- and endo-PG activity, lower amounts of ethylene evolution, as well as higher amounts of endogenous calcium bound in the cell wall compared to fruit of the firmer cultivar (Royal Glory). These differences may be attributed to the incidence of chilling injury symptoms, evident as loss of juiciness in Morettini No 2 fruit, while Royal Glory fruit were characterized by acceptable appearance and eating quality even after 6 weeks cold storage plus 5 days shelf life, as the fruit softened gradually without cell rupture. Overall results showed that no direct relationship between cell wall physicochemical properties and sensory attributes can be established, indicating the complexity of peach fruit ripening. Since fruit of both cultivars presented similar tissue firmness after 5 days shelf life an attempt to distinguish normal peach fruit softening from cell rupture-chilling injury also has been made in the current study.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 373
Author(s):  
H. M. Prathibhani C. Kumarihami ◽  
Jin Gook Kim ◽  
Yun-Hee Kim ◽  
Mockhee Lee ◽  
Young-Suk Lee ◽  
...  

The influence of the preharvest application of chitosan on physicochemical properties and changes in gene expression of ‘Garmrok’ kiwifruit during postharvest cold storage (0 °C; RH 90–95%; 90 days) was investigated. Preharvest treatment of chitosan increased the fruit weight but had no significant effect on fruit size. The chitosan treatment suppressed the ethylene production and respiration rate of kiwifruit during the cold storage. The reduction of ethylene production of chitosan-treated kiwifruit was accompanied with the suppressed expression of ethylene biosynthesis genes. Moreover, preharvest application of chitosan diminished weight loss and delayed the changes in physicochemical properties that include firmness, soluble solids content, titratable acidity, total sugars, total acids, total phenols, and total lignin. As a result, the preharvest application of chitosan delayed the maturation and ripening of fruit. Expression of genes related to cell wall modification was down-regulated during the early maturation (ripening) period, while those related to gene expression for lignin metabolism were up-regulated at the later stages of ripening. These results demonstrate that the preharvest application of chitosan maintained the fruit quality and extends the postharvest life of ‘Garmrok’ kiwifruit, possibly through the modulation of genes related to ethylene biosynthesis, cell wall modification, and lignin metabolism.


2005 ◽  
Vol 45 (12) ◽  
pp. 1635 ◽  
Author(s):  
A. Uthairatanakij ◽  
P. Penchaiya ◽  
B. McGlasson ◽  
P. Holford

Low temperature disorders of nectarines are thought to be expressions of chilling injury. Chilling injury is a form of stress usually associated with increased synthesis of ethylene and its immediate precursor, aminocyclopropane-1-carboxylic acid (ACC). However, other mechanisms for the development of chilling injury have been proposed. To help determine the nature of the processes leading to chilling injury in nectarines (Prunus persica) and how the gaseous composition of the storage atmosphere effects the development of low temperature disorders, levels of ACC and conjugated ACC were measured in fruit of the cv. Arctic Snow. These compounds were measured in fruit ripened at 20°C immediately after harvest, in fruit on removal from cold storage and in fruit ripened at 20°C following cold storage. During storage, fruit were kept at 0°C in the 4 following atmospheres: air; air + 15% CO2; air + 15 µL/L ethylene; and air + 15% CO2 + 15 µL/L ethylene. Concentrations of ACC remained low in all treatments and no significant changes in ACC levels due to added ethylene or CO2 were observed. Concentrations of conjugated ACC were about 10-times that of ACC and again were not influenced by the composition of the storage atmosphere. No significant changes in either ACC or conjugated ACC were observed until after flesh bleeding, the major symptoms of low temperature disorder expressed in these fruit, had begun to appear. It was concluded that disorders in nectarines stored at low temperatures are not a stress response involving a disruption of ethylene metabolism but may be associated with differential changes in the metabolism of enzymes associated with normal ripening.


2007 ◽  
Vol 227 (2) ◽  
pp. 607-618 ◽  
Author(s):  
Robert J. Redgwell ◽  
Delphine Curti ◽  
Cécile Gehin-Delval

Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 38 ◽  
Author(s):  
Changtao Li ◽  
Lingling Xuan ◽  
Yuming He ◽  
Jie Wang ◽  
Hui Zhang ◽  
...  

A bamboo shoot is the immature stem of the woody grass and a nutritious and popular vegetable in East Asia. However, it undergoes a rapid xylogenesis process right after harvest, even being stored in a cold chamber. To investigate the molecular regulation mechanisms of xylogenesis in Moso bamboo (Phyllostachys edulis) shoots (MBSes) during cold storage, the measurement of cell wall polymers (cellulose, hemicellulose, and lignin) and related enzyme activities (phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), peroxidase (POD), and xylan xylosyltransferase (XylT)) and transcriptomic analysis were performed during cold storage. It was noticed that cellulose and lignin contents increased, while hemicellulose content exhibited a downward trend. PAL, CAD, and POD activity presented an upward trend generally in MBS when stored at 4 °C for 16 days. XylT activity showed a descending trend during the stages of storage, but slightly increased during the 8th to 12th days after harvest at 4 °C. Transcriptomic analysis identified 72, 28, 44, and 31 functional unigenes encoding lignin, cellulose, xylan biosynthesis enzymes, and transcription factors (TFs), respectively. Many of these secondary cell wall (SCW)-related genes showed higher expression levels in the later period of cold storage. Quantitative RT-PCR analysis of the selected genes conformed to the expression pattern. Our study provides a comprehensive analysis of MBS secondary wall biosynthesis at the molecular level during the cold storage process. The results give insight into the xylogenesis process of this economically important vegetable and shed light on solving this problem of the post-harvest industry.


Sign in / Sign up

Export Citation Format

Share Document