Effect of post-harvest calcium treatments on the physicochemical properties of cell wall pectin in nectarine fruit during ripening after harvest or cold storage

2005 ◽  
Vol 80 (5) ◽  
pp. 611-617 ◽  
Author(s):  
G.A. Manganaris ◽  
M. Vasilakakis ◽  
G. Diamantidis ◽  
I. Mignani
2008 ◽  
Vol 14 (4) ◽  
pp. 385-391 ◽  
Author(s):  
G.A. Manganaris ◽  
M. Vasilakakis ◽  
I. Mignani ◽  
A. Manganaris

A comparative study between melting flesh peach fruit (Prunus persica L. Batsch cvs. Royal Glory and Morettini No 2) with contrasting tissue firmness during their on-tree ripening was conducted. Such fruit were cold stored (0 °C) for 4 and 6 weeks, and subsequently transferred at 25 °C (shelf life) for up to 5 days and evaluated for quality attributes and cell wall physicochemical properties. Data were partly unexpected, since fruit of the soft cultivar (Morettini No 2) were characterized by lower exo- and endo-PG activity, lower amounts of ethylene evolution, as well as higher amounts of endogenous calcium bound in the cell wall compared to fruit of the firmer cultivar (Royal Glory). These differences may be attributed to the incidence of chilling injury symptoms, evident as loss of juiciness in Morettini No 2 fruit, while Royal Glory fruit were characterized by acceptable appearance and eating quality even after 6 weeks cold storage plus 5 days shelf life, as the fruit softened gradually without cell rupture. Overall results showed that no direct relationship between cell wall physicochemical properties and sensory attributes can be established, indicating the complexity of peach fruit ripening. Since fruit of both cultivars presented similar tissue firmness after 5 days shelf life an attempt to distinguish normal peach fruit softening from cell rupture-chilling injury also has been made in the current study.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 373
Author(s):  
H. M. Prathibhani C. Kumarihami ◽  
Jin Gook Kim ◽  
Yun-Hee Kim ◽  
Mockhee Lee ◽  
Young-Suk Lee ◽  
...  

The influence of the preharvest application of chitosan on physicochemical properties and changes in gene expression of ‘Garmrok’ kiwifruit during postharvest cold storage (0 °C; RH 90–95%; 90 days) was investigated. Preharvest treatment of chitosan increased the fruit weight but had no significant effect on fruit size. The chitosan treatment suppressed the ethylene production and respiration rate of kiwifruit during the cold storage. The reduction of ethylene production of chitosan-treated kiwifruit was accompanied with the suppressed expression of ethylene biosynthesis genes. Moreover, preharvest application of chitosan diminished weight loss and delayed the changes in physicochemical properties that include firmness, soluble solids content, titratable acidity, total sugars, total acids, total phenols, and total lignin. As a result, the preharvest application of chitosan delayed the maturation and ripening of fruit. Expression of genes related to cell wall modification was down-regulated during the early maturation (ripening) period, while those related to gene expression for lignin metabolism were up-regulated at the later stages of ripening. These results demonstrate that the preharvest application of chitosan maintained the fruit quality and extends the postharvest life of ‘Garmrok’ kiwifruit, possibly through the modulation of genes related to ethylene biosynthesis, cell wall modification, and lignin metabolism.


2007 ◽  
Vol 227 (2) ◽  
pp. 607-618 ◽  
Author(s):  
Robert J. Redgwell ◽  
Delphine Curti ◽  
Cécile Gehin-Delval

Author(s):  
Jakellinye Miranda ◽  
Suélen Braga de Andrade, Andressa Vighi Schiavon ◽  
Pedro Luis Panisson Kaltbach Lemos ◽  
Cláudia Simone Madruga Lima ◽  
Marcelo Barbosa Malgarim

Peach is a climacteric highly-perishable fruit whose post-harvest preservation relies largely on cold storage. The combination of the last with other technologies allows to extend the shelf life of this product. One alternative is the utilization of salicylic acid, a natural compound involved in many physiological phenomena such as resistance against diseases and ripening. Considering these facts, the objective of the present work was to evaluate the effect of pre-harvest application of salicylic acid solutions on the quality of ‘Chimarrita’ peaches during post-harvest cold storage. The experiment was conducted at the Federal University of Pelotas/RS, in the campus of Capão do Leão/RS - Brazil. The application of salicylic acid solutions was performed by direct pulverization on the fruits, 30 days prior to harvest. The concentrations were: 0,0 (control); 1,0; 1,5; and 2,0 mM. After harvest, the fruits were stored in a cold chamber at 1,0 ± 0,5°C and 85-90% RH, for 30 days. The analyses were performed at the following cold storage periods (plus 2 days at room temperature of 20°C to all treatments, in order to simulate commercialization conditions): 10 (+2) days; 20 (+2) days; e 30 (+2) days. The variables evaluated were: mass loss (%); flesh firmness (N); DA index; color (L, a*, b* and hue angle); wooliness incidence (%); rot incidence (%); total soluble solids (°Brix); pH; titrable acidity (% of organic acids); and ratio. The salicylic acid doses and/or the cold storage periods had significant effects on all the evaluated parameters. For most of the parameters analyzed, the intermediate dosis of 1mM (and also 1,5mM) of salicilic acid showed the most promising results. Therefore, the application of salicylic acid solutions 30 days prior to harvest is a technique which can be combined to cold storage in order to shift the quality and the shelf-life of ‘Chimarrita’ peaches.


Sign in / Sign up

Export Citation Format

Share Document