Biodegradation of cell wall components of maize stover colonized by white-rot fungi and resulting impact on in-vitro digestibility

1995 ◽  
Vol 68 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Jinchuan Chen ◽  
Steven L Fales ◽  
Gabriella A Varga ◽  
Daniel J Royse
Crop Science ◽  
1994 ◽  
Vol 34 (6) ◽  
pp. 1672-1678 ◽  
Author(s):  
J. P. Lundvall ◽  
D. R. Buxton ◽  
A. R. Hallauer ◽  
J. R. George

2021 ◽  
Vol 22 (3) ◽  
pp. 1169
Author(s):  
Yuhan Chang ◽  
Chih-Chien Hu ◽  
Ying-Yu Wu ◽  
Steve W. N. Ueng ◽  
Chih-Hsiang Chang ◽  
...  

Bacterial infection in orthopedic surgery is challenging because cell wall components released after bactericidal treatment can alter osteoblast and osteoclast activity and impair fracture stability. However, the precise effects and mechanisms whereby cell wall components impair bone healing are unclear. In this study, we characterized the effects of lipopolysaccharide (LPS) on bone healing and osteoclast and osteoblast activity in vitro and in vivo and evaluated the effects of ibudilast, an antagonist of toll-like receptor 4 (TLR4), on LPS-induced changes. In particular, micro-computed tomography was used to reconstruct femoral morphology and analyze callus bone content in a femoral defect mouse model. In the sham-treated group, significant bone bridge and cancellous bone formation were observed after surgery, however, LPS treatment delayed bone bridge and cancellous bone formation. LPS inhibited osteogenic factor-induced MC3T3-E1 cell differentiation, alkaline phosphatase (ALP) levels, calcium deposition, and osteopontin secretion and increased the activity of osteoclast-associated molecules, including cathepsin K and tartrate-resistant acid phosphatase in vitro. Finally, ibudilast blocked the LPS-induced inhibition of osteoblast activation and activation of osteoclast in vitro and attenuated LPS-induced delayed callus bone formation in vivo. Our results provide a basis for the development of a novel strategy for the treatment of bone infection.


2014 ◽  
Vol 8 (28) ◽  
pp. 2724-2732 ◽  
Author(s):  
Braga Pereira Bento Cludia ◽  
Soares da Silva Juliana ◽  
Teixeira Rodrigues Marcelo ◽  
Catarina Megumi Kasuya Maria ◽  
Cuquetto Mantovani Hilrio

2001 ◽  
Vol 57 (6) ◽  
pp. 491-500 ◽  
Author(s):  
Zhensheng Kang ◽  
Lili Huang ◽  
Ulrich Krieg ◽  
Astrid Mauler-Machnik ◽  
Heinrich Buchenauer

2021 ◽  
Author(s):  
Adeeba H Dhalech ◽  
Tara D Fuller ◽  
Christopher M Robinson

Enteric viruses infect the mammalian gastrointestinal tract and lead to significant morbidity and mortality worldwide. Data indicate that enteric viruses can utilize intestinal bacteria to promote viral replication and pathogenesis. However, the precise interactions between enteric viruses and bacteria are unknown. Here we examined the interaction between bacteria and Coxsackievirus B3, an enteric virus from the picornavirus family. We found that bacteria enhance the infectivity of Coxsackievirus B3 (CVB3) in vitro. Notably, specific bacteria are required as gram-negative Salmonella enterica, but not Escherichia coli, enhanced CVB3 infectivity and stability. Investigating the cell wall components of both S. enterica and E. coli revealed that structures in the O-antigen or core of lipopolysaccharide, a major component of the gram-negative bacterial cell wall, were required for S. enterica to enhance CVB3. To determine if these requirements were necessary for similar enteric viruses, we investigated if S. enterica and E. coli enhanced infectivity of poliovirus, another enteric virus in the picornavirus family. We found that, in contrast to CVB3, these bacteria enhanced the infectivity of poliovirus in vitro. Overall, these data indicate that distinct bacteria enhance CVB3 infectivity and stability, and specific enteric viruses may have differing requirements for their interactions with specific bacterial species.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 444-444
Author(s):  
Paulina Luna Moreno ◽  
Hermilo Leal-Lara ◽  
Águeda García-Pérez ◽  
Luis Corona ◽  
Atmir Romero-Pérez ◽  
...  

Abstract Agricultural by-products such as corn stover (CS) are abundantly available in many countries; however, its high content of neutral detergent fiber (NDF) and lignin (L) and low protein content, causes low digestibility and nutrient availability for ruminants. The production of edible fungi could improve the digestibility of the CS because fungi can break down the cross-links between cell wall components. The aim of the study was to evaluate the effect of the invaded CS-based substrate used in the production of 21 white rot fungi of the species: Auricularia sp (Auri), Ganoderma sp (Gano), Hericium sp (Heri), Lentinula edodes (LC, L5, L9, L15, L21), Pleurotus eryngii (Pe-PQ, Pe-MB), Pleurotus djamour (Pd-Pro, Pd-UTMR) and Pleurotus ostreatus (Po-IAP, Po-Psma, Po-P14, Po-POS, Po-IE202, Po-JP, Po-P35, Po-P38, Po-Sfco) on crude protein (CP), NDF and L content and in vitro dry matter digestibility (IVDMD). The variables were analyzed in a completely randomized design with the MIXED procedure of SAS and the comparison of the means was made with the Tukey analysis. For CP, a significant increase (P < 0.05) was observed from 10% (Pe-MB) to 41% (LC) in comparison with the substrate without inoculation (C). There was a decrease (P < 0.05) of NDF from 2% (LC) to 10% (Pd-PRO) against C. Fungal treated CS had no effect on L (P < 0.05) as compared to C. Treatments increased (P < 0.05) IVDMD from 3% (L15) up to 36% (Po-POS) for all fungal strains, except for Pe-PQ and Po-Sfco in comparison with C. There was a positive correlation (r2=0.21, P < 0.05) between CP and IVDMD. An equation was obtained to predict IVDMD [IVDMD=0.40578 + 358.38(%ADF)–358.02(%NDF)+358.17(%HEM)–0.3211(%DM), R2=0.32 (P < 0.05)]. In conclusion the mycelial invasion of white rot fungi on a CS-based substrate, increased CP content, decreased NDF and improved IVDMD, making it a viable option to increase the digestibility of CS.


Sign in / Sign up

Export Citation Format

Share Document