Temperature and Photo Dual‐Stimuli Responsive Block Copolymer Self‐Assembly Micelles for Cellular Controlled Drug Release

2020 ◽  
pp. 2000291
Author(s):  
Zi‐Hao Zhou ◽  
Jian‐Guo Zhang ◽  
Qing Chen ◽  
Yan‐Ling Luo ◽  
Feng Xu ◽  
...  
2020 ◽  
Vol 2 ◽  
Author(s):  
Xiaoxue Hu ◽  
Ziqi Xu ◽  
Qianhao Min ◽  
Chao Teng ◽  
Ye Tian

Nanostructures specifically responsive to endogenous biomolecules hold great potential in accurate diagnosis and precision therapy of cancers. In the pool of nanostructures with responsiveness to unique triggers, nanomaterials derived from DNA self-assembly have drawn particular attention due to their intrinsic biocompatibility and structural programmability, enabling the selective bioimaging, and site-specific drug delivery in cancer cells and tumor tissues. In this mini review, we summarize the most recent advances in the development of endogenous stimuli-responsive DNA nanostructures featured with precise self-assembly, targeted delivery, and controlled drug release for cancer theranostics. This mini review briefly discusses the diverse dynamic DNA nanostructures aiming at bioimaging and biomedicine, including DNA self-assembling materials, DNA origami structures, DNA hydrogels, etc. We then elaborate the working principles of DNA nanostructures activated by biomarkers (e.g., miRNA, mRNA, and proteins) in tumor cells and microenvironments of tumor tissue (e.g., pH, ATP, and redox gradient). Subsequently, applications of the endogenous stimuli-responsive DNA nanostructures in biological imaging probes for detecting cancer hallmarks as well as intelligent carriers for drug release in vivo are discussed. In the end, we highlight the current challenges of DNA nanotechnology and the further development of this promising research direction.


2021 ◽  
Vol 9 (1) ◽  
pp. 38-50
Author(s):  
Hien Phan ◽  
Vincenzo Taresco ◽  
Jacques Penelle ◽  
Benoit Couturaud

Stimuli-responsive amphiphilic block copolymers obtained by PISA have emerged as promising nanocarriers for enhancing site-specific and on-demand drug release in response to a range of stimuli such as pH, redox agents, light or temperature.


Author(s):  
Shanshan Liu ◽  
Zhaoliang Guo ◽  
Xiongfeng Zeng ◽  
Xianguang Meng ◽  
Haina Sun ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (48) ◽  
pp. 29986-29996
Author(s):  
Xiuxiu Qi ◽  
Hongmei Yan ◽  
Yingxue Li

A pH-sensitive core–shell nanoparticle (HMS@C18@PSDMA-b-POEGMA) was developed via a self-assembly process as the carrier of anticancer drug doxorubicin (DOX) for drug loading and controlled release.


2013 ◽  
Vol 538 ◽  
pp. 181-184 ◽  
Author(s):  
Xin De Tang ◽  
Ye Chen ◽  
Fa Qi Yu ◽  
Mei Shan Pei

Organic/inorganic hybrid materials based upon stimuli-responsive copolymers have attracted an inceasing attention. Compared with the polymeric materials, these hybrid materials can form aggregates in aqueous solution with much more stable shape-persistance due to the inorganic structure, which facilitate the mass delivery and long-term life. A novel hybrid material based on a new reactive block copolymer, poly(ethylene oxide)-block-poly{3-(trimethoxysilyl)propyl methacrylate-co-N-isopropylacrylamide-co-6-[4-(4-methoxyphenylazo)phenoxy]hexyl methacrylate} [PEO-P(TMSPMA-NIPAM-AzoMA)] was synthesized via atom transfer radical polymerization (ATRP). The vesicles were obtained by self-assembly of the resulting block copolymer in a selective solvent, and then the PTMSPMA block was subjected to hydrolysis and polycondensation reaction to fix vesicle wall in the presence of triethylamine as a catalyst. The photo- and thermo- dual-responsive properties of the vesicles were investigated.


2018 ◽  
Vol 458 ◽  
pp. 355-364 ◽  
Author(s):  
Tíffany Marín ◽  
Paula Montoya ◽  
Oscar Arnache ◽  
Rodolfo Pinal ◽  
Jorge Calderón

Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1208
Author(s):  
Narsimha Mamidi ◽  
Ramiro Velasco Delgadillo ◽  
Aldo Gonzáles Ortiz ◽  
Enrique Barrera

Herein, poly (N-(4-aminophenyl) methacrylamide))-carbon nano-onions (PAPMA-CNOs = f-CNOs) and anilinated-poly (ether ether ketone) (AN-PEEK) have synthesized, and AN-PEEK/f-CNOs composite thin films were primed via layer-by-layer (LbL) self-assembly for stimuli-responsive drug release. The obtained thin films exhibited pH-responsive drug release in a controlled manner; pH 4.5 = 99.2% and pH 6.5 = 59.3% of doxorubicin (DOX) release was observed over 15 days. Supramolecular π-π stacking interactions between f-CNOs and DOX played a critical role in controlling drug release from thin films. Cell viability was studied with human osteoblast cells and augmented viability was perceived. Moreover, the thin films presented 891.4 ± 8.2 MPa of the tensile strength (σult), 43.2 ± 1.1 GPa of Young’s modulus (E), and 164.5 ± 1.7 Jg−1 of toughness (K). Quantitative scrutiny revealed that the well-ordered aligned nanofibers provide critical interphase, and this could be responsible for augmented tensile properties. Nonetheless, a pH-responsive and mechanically robust biocompatible thin-film system may show potential applications in the biomedical field.


Sign in / Sign up

Export Citation Format

Share Document