redox agents
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 13)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
Di Chang ◽  
Yuanyuan Ma ◽  
Xiaoxuan Xu ◽  
Jinbing Xie ◽  
Shenghong Ju

Polymeric nanoparticles have been widely used as carriers of drugs and bioimaging agents due to their excellent biocompatibility, biodegradability, and structural versatility. The principal application of polymeric nanoparticles in medicine is for cancer therapy, with increased tumor accumulation, precision delivery of anticancer drugs to target sites, higher solubility of pharmaceutical properties and lower systemic toxicity. Recently, the stimuli-responsive polymeric nanoplatforms attracted more and more attention because they can change their physicochemical properties responding to the stimuli conditions, such as low pH, enzyme, redox agents, hypoxia, light, temperature, magnetic field, ultrasound, and so on. Moreover, the unique properties of stimuli-responsive polymeric nanocarriers in target tissues may significantly improve the bioactivity of delivered agents for cancer treatment. This review introduces stimuli-responsive polymeric nanoparticles and their applications in tumor theranostics with the loading of chemical drugs, nucleic drugs and imaging molecules. In addition, we discuss the strategy for designing multifunctional polymeric nanocarriers and provide the perspective for the clinical applications of these stimuli-responsive polymeric nanoplatforms.


2021 ◽  
Vol 2 ◽  
Author(s):  
Carl H. Lamborg ◽  
Colleen M. Hansel ◽  
Katlin L. Bowman ◽  
Bettina M. Voelker ◽  
Ryan M. Marsico ◽  
...  

Much of the surface water of the ocean is supersaturated in elemental mercury (Hg0) with respect to the atmosphere, leading to sea-to-air transfer or evasion. This flux is large, and nearly balances inputs from the atmosphere, rivers and hydrothermal vents. While the photochemical production of Hg0 from ionic and methylated mercury is reasonably well-studied and can produce Hg0 at fairly high rates, there is also abundant Hg0 in aphotic waters, indicating that other important formation pathways exist. Here, we present results of gross reduction rate measurements, depth profiles and diel cycling studies to argue that dark reduction of Hg2+ is also capable of sustaining Hg0 concentrations in the open ocean mixed layer. In locations where vertical mixing is deep enough relative to the vertical penetration of UV-B and photosynthetically active radiation (the principal forms of light involved in abiotic and biotic Hg photoreduction), dark reduction will contribute the majority of Hg0 produced in the surface ocean mixed layer. Our measurements and modeling suggest that these conditions are met nearly everywhere except at high latitudes during local summer. Furthermore, the residence time of Hg0 in the mixed layer with respect to evasion is longer than that of redox, a situation that allows dark reduction-oxidation to effectively set the steady-state ratio of Hg0 to Hg2+ in surface waters. The nature of these dark redox reactions in the ocean was not resolved by this study, but our experiments suggest a likely mechanism or mechanisms involving enzymes and/or important redox agents such as reactive oxygen species and manganese (III).


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marko Ušaj ◽  
Luisa Moretto ◽  
Venukumar Vemula ◽  
Aseem Salhotra ◽  
Alf Månsson

AbstractBenefits of single molecule studies of biomolecules include the need for minimal amounts of material and the potential to reveal phenomena hidden in ensembles. However, results from recent single molecule studies of fluorescent ATP turnover by myosin are difficult to reconcile with ensemble studies. We found that key reasons are complexities due to dye photophysics and fluorescent contaminants. After eliminating these, through surface cleaning and use of triple state quenchers and redox agents, the distributions of ATP binding dwell times on myosin are best described by 2 to 3 exponential processes, with and without actin, and with and without the inhibitor para-aminoblebbistatin. Two processes are attributable to ATP turnover by myosin and actomyosin respectively, whereas the remaining process (rate constant 0.2–0.5 s−1) is consistent with non-specific ATP binding to myosin, possibly accelerating ATP transport to the active site. Finally, our study of actin-activated myosin ATP turnover without sliding between actin and myosin reveals heterogeneity in the ATP turnover kinetics consistent with models of isometric contraction.


2021 ◽  
Vol 9 (1) ◽  
pp. 38-50
Author(s):  
Hien Phan ◽  
Vincenzo Taresco ◽  
Jacques Penelle ◽  
Benoit Couturaud

Stimuli-responsive amphiphilic block copolymers obtained by PISA have emerged as promising nanocarriers for enhancing site-specific and on-demand drug release in response to a range of stimuli such as pH, redox agents, light or temperature.


Author(s):  
Yuan-Zhao Ji ◽  
Chi Zhang ◽  
Jun-Hu Wang ◽  
Hui-Jing Li ◽  
Yan-Chao Wu

Direct conversion of sulfinamides to thiosulfonates is described. Without use of additional redox agents, the reaction goes smoothly in the presence of TFA under metal-free conditions. This protocol possesses many...


Author(s):  
Marko Usaj ◽  
Luisa Moretto ◽  
Venukumar Vemula ◽  
Aseem Salhotra ◽  
Alf Månsson

AbstractSingle molecule enzymology using fluorescent substrate requires truly minimal amounts of proteins. This is highly beneficial when the protein source is either advanced expression systems or samples from humans/animals with ethical and economic implications. Further benefits of single molecule analysis is the potential to reveal phenomena hidden in ensemble studies. However, dye photophysics and fluorescent contaminants complicate interpretation of the single molecule data. We here corroborate the importance of such complexities using fluorescent Alexa647 ATP to study ATP turnover by myosin and actomyosin. We further show that the complexities are largely eliminated by aggressive surface cleaning and use of a range of triple state quenchers and redox agents with minor effects on actin-myosin function. Using optimized assay conditions, we then show that the distributions of ATP binding dwell times on myosin are best described by the sum of 2 to 3 exponential processes. This applies in the presence and absence of actin and in the presence and absence of the drug para-aminoblebbistatin. Two of the processes are attributable to ATP turnover by myosin and actomyosin, respectively. A remaining process with rate constant in the range 0.2-0.5 s-1 is consistent with non-specific ATP binding to myosin and bioinformatics modelling suggests that such binding may be important for accelerated ATP transport to the active site. Finally, we report studies of the actin-activated myosin ATP turnover under conditions with no sliding between actin and myosin, as in isometrically contracting muscle, revealing heterogeneity in the ATP turnover kinetics between different molecules.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Iskander M. Ibrahim ◽  
Huan Wu ◽  
Roman Ezhov ◽  
Gilbert E. Kayanja ◽  
Stanislav D. Zakharov ◽  
...  

AbstractPhotosynthetic efficiency depends on equal light energy conversion by two spectrally distinct, serially-connected photosystems. The redox state of the plastoquinone pool, located between the two photosystems, is a key regulatory signal that initiates acclimatory changes in the relative abundance of photosystems. The Chloroplast Sensor Kinase (CSK) links the plastoquinone redox signal with photosystem gene expression but the mechanism by which it monitors the plastoquinone redox state is unclear. Here we show that the purified Arabidopsis and Phaeodactylum CSK and the cyanobacterial CSK homologue, Histidine kinase 2 (Hik2), are iron-sulfur proteins. The Fe-S cluster of CSK is further revealed to be a high potential redox-responsive [3Fe-4S] center. CSK responds to redox agents with reduced plastoquinone suppressing its autokinase activity. Redox changes within the CSK iron-sulfur cluster translate into conformational changes in the protein fold. These results provide key insights into redox signal perception and propagation by the CSK-based chloroplast two-component system.


Sign in / Sign up

Export Citation Format

Share Document