Chemical Composition of Hexene‐Based Linear Low‐Density Polyethylene by Infrared Spectroscopy and Chemometrics

2019 ◽  
Vol 220 (24) ◽  
pp. 1900376
Author(s):  
Olivier Boyron ◽  
Manel Taam ◽  
Christophe Boisson
Author(s):  
Douglas Da Silva Vallada ◽  
Carlos Alberto Mendes Moraes ◽  
Paulo Ricardo Santos da Silva

Thermoplastics are increasingly present in the daily life of society in the most varied applications. Among the thermoplastics, polyethylene is the one that presents the higher volume of worldwide production and consumption. However, a large part of its applications are for products with a short shelf life, especially the food packaging sector. This way, they become expressive constituents in the composition of urban solid waste, leading to large quantities often being deposited in landfills. Pyrolysis appears as a technology for recycling plastic waste, allowing the recovery of the monomers that originated it. Through this thermochemical process, the waste is converted into three different products: oil or, in some cases wax, non-condensable gases, and a solid fraction named char. Thus, the goal of this study is to contribute for the development of pyrolysis as a technology for the final treatment of low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) waste from post-consumer packaging, through the analysis of the influence of the pyrolysis temperature in the chemical composition of the oil produced, as well as the discussion of possible applications. For this purpose, the waste was initially characterized through analyses of attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), thermogravimetry (TGA), differential scanning calorimetry (DSC), and X-ray fluorescence (XRF). The characterization experiments showed that the plastic waste is constituted of 4.07% ash, 0.52% fixed carbon, and 95.54% volatile matter, showing its great potential to produce pyrolytic oil. Thermal degradation of the waste initiated at around 410°C and continued through about 530°C, with maximum rate of thermal degradation at about 488°C. The pyrolysis process was carried out with 50g samples of post-consumer LDPE and LLDPE, previously agglutinated, with particle size ranging from 0.001mm to 4mm, in a horizontal quartz reactor, with an inert atmosphere of N2, heating rate of 10°C/min, and residence time of 30 minutes. The experiments were conducted with experimental temperatures of 500°C and 700°C, in order to verify the influence of the temperature in the chemical composition of the oil obtained in the process. The analysis of the oil collected at 500°C by infrared spectroscopy revealed a specter similar to the one of commercial diesel. Through gas chromatography coupled with mass spectrometry, it was verified a composition constituted mostly by olefins (44%), from 8 to 35 carbon atoms, followed by paraffins (23.8%), and cycloparaffins (10%). There was also a considerable percentage of alpha-olefins, important for the petrochemical industry, and a percentage of aromatic compounds on a trace level. By varying the temperature to 700°C, an increase in the level of aromatic compounds to 16.6% occurred, accompanied by a decrease in the percentage of olefins, paraffins, and cycloparaffins. The oils obtained in both temperatures have potential for application in steam cracking or conventional catalytic cracking processes to obtain the raw materials of the petrochemical industry.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1537
Author(s):  
Luděk Hynčík ◽  
Petra Kochová ◽  
Jan Špička ◽  
Tomasz Bońkowski ◽  
Robert Cimrman ◽  
...  

Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45° direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.


2015 ◽  
Vol 37 (11) ◽  
pp. 3167-3174 ◽  
Author(s):  
S. Sánchez-Valdes ◽  
E. Ramírez-Vargas ◽  
L.F. Ramos de Valle ◽  
J.G. Martinez-Colunga ◽  
J. Romero-Garcia ◽  
...  

1988 ◽  
Vol 27 (2) ◽  
pp. 172-178 ◽  
Author(s):  
S. Ottani ◽  
A. Valenza ◽  
F. P. La Mantia

Sign in / Sign up

Export Citation Format

Share Document