New Results on the CorrelationMolecular Architecture-Melt Elasticity-Blowing Process-Film Properties for Conventional and Metallocene-Catalyzed Polyethylenes

2006 ◽  
Vol 291 (6) ◽  
pp. 670-676 ◽  
Author(s):  
Virginia Leal ◽  
Pilar Lafuente ◽  
Raquel Alicante ◽  
Ruth Pérez ◽  
Anton Santamaría
Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 332
Author(s):  
Jancikova Simona ◽  
Dordevic Dani ◽  
Sedlacek Petr ◽  
Nejezchlebova Marcela ◽  
Treml Jakub ◽  
...  

The research aim was to use orange essential oil and trehalose in a carrageenan matrix to form edible packaging. The edible packaging experimentally produced by casting from an aqueous solution were evaluated by the following analysis: UV-Vis spectrum, transparency value, transmittance, attenuated total reflectance Fourier-Transform spectroscopy (FTIR), scanning electron microscopy (SEM) and antimicrobial activity. The obtained results showed that the combination of orange essential oil with trehalose decreases the transmittance value in the UV and Vis regions (up to 0.14% ± 0.02% at 356 nm), meaning that produced films can act as a UV protector. Most produced films in the research were resistant to Gram-positive bacteria (Staphylococcus aureus subsp. aureus), though most films did not show antibacterial properties against Gram-negative bacteria and yeasts. FTIR and SEM confirmed that both the amount of carrageenan used and the combination with orange essential oil influenced the compatibility of trehalose with the film matrix. The research showed how different combinations of trehalose, orange essential oils and carrageenan can affect edible film properties. These changes represent important information for further research and the possible practical application of these edible matrices.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haijun Wu ◽  
Shoucong Ning ◽  
Moaz Waqar ◽  
Huajun Liu ◽  
Yang Zhang ◽  
...  

AbstractTraditional strategies for improving piezoelectric properties have focused on phase boundary engineering through complex chemical alloying and phase control. Although they have been successfully employed in bulk materials, they have not been effective in thin films due to the severe deterioration in epitaxy, which is critical to film properties. Contending with the opposing effects of alloying and epitaxy in thin films has been a long-standing issue. Herein we demonstrate a new strategy in alkali niobate epitaxial films, utilizing alkali vacancies without alloying to form nanopillars enclosed with out-of-phase boundaries that can give rise to a giant electromechanical response. Both atomically resolved polarization mapping and phase field simulations show that the boundaries are strained and charged, manifesting as head-head and tail-tail polarization bound charges. Such charged boundaries produce a giant local depolarization field, which facilitates a steady polarization rotation between the matrix and nanopillars. The local elastic strain and charge manipulation at out-of-phase boundaries, demonstrated here, can be used as an effective pathway to obtain large electromechanical response with good temperature stability in similar perovskite oxides.


MEMBRANE ◽  
1995 ◽  
Vol 20 (4) ◽  
pp. 255-262
Author(s):  
Ryoichi Tsurutani ◽  
Masaya Yoshimura ◽  
Nobuyuki Tanimoto ◽  
Koji Kifune
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1146
Author(s):  
Zuzanna Żołek-Tryznowska ◽  
Alicja Kałuża

Starch films can be used as materials for food packaging purposes. The goal of this study is to compare how the starch origin influence the selected starch film properties. The films were made from various starches such as that from maize, potato, oat, rice, and tapioca using 50%w of glycerine as a plasticizer. The obtained starch-based films were made using the well-known casting method from a starch solution in water. The properties of the films that were evaluated were tensile strength, water vapour transition rate, moisture content, wettability, and their surface free energy. Surface free energy (SFE) and its polar and dispersive components were calculated using the Owens-Wendt-Rabel-Kaelbe approach. The values of SFE in the range of 51.64 to 70.81 mJ∙m−2 for the oat starch-based film and the maize starch-based film. The films revealed worse mechanical properties than those of conventional plastics for packaging purposes. The results indicated that the poorest tensile strength was exhibited by the starch-based films made from oat (0.36 MPa) and tapioca (0.78 MPa) and the greatest tensile strength (1.49 MPa) from potato.


2014 ◽  
Vol 1016 ◽  
pp. 14-18
Author(s):  
Xian Wei Liu ◽  
Jia Sheng Wang ◽  
Lan Tao Wu ◽  
Xin Zhang ◽  
Hua Cheng

Based on air cushion belt conveyor, a new type of belt conveyor named water cushion belt conveyor is proposed. It has a wide scope of applications for its features such as stability and reliability, capability of full load start-up, and environment-friendliness. This paper studies the working mechanism and lubricating mechanism of the water cushion belt conveyor. The basic lubrication equation of the water cushion is deduced from the universal form of the Reynolds equation used to study the pressure film properties of the water cushion. The design of the key part of the water cushion device is described in details. The research can be taken as a reference in practical applications.


1999 ◽  
Vol 28 (5) ◽  
pp. 283-292 ◽  
Author(s):  
Seng‐Neon Gan ◽  
Kim‐Teck Teo
Keyword(s):  

2005 ◽  
Vol 88 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Xuege Wang ◽  
Sheng S. Li ◽  
C.H. Huang ◽  
S. Rawal ◽  
J.M. Howard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document