Permittivity measurement of low and high loss liquids in the frequency range of 8 to 40 GHz using waveguide transmission line technique

2005 ◽  
Vol 48 (2) ◽  
pp. 275-281 ◽  
Author(s):  
Mohammed N. Afsar ◽  
Nattakarn Suwanvisan ◽  
Yong Wang
2017 ◽  
Vol 26 (05) ◽  
pp. 1750075 ◽  
Author(s):  
Najam Muhammad Amin ◽  
Lianfeng Shen ◽  
Zhi-Gong Wang ◽  
Muhammad Ovais Akhter ◽  
Muhammad Tariq Afridi

This paper presents the design of a 60[Formula: see text]GHz-band LNA intended for the 63.72–65.88[Formula: see text]GHz frequency range (channel-4 of the 60[Formula: see text]GHz band). The LNA is designed in a 65-nm CMOS technology and the design methodology is based on a constant-current-density biasing scheme. Prior to designing the LNA, a detailed investigation into the transistor and passives performances at millimeter-wave (MMW) frequencies is carried out. It is shown that biasing the transistors for an optimum noise figure performance does not degrade their power gain significantly. Furthermore, three potential inductive transmission line candidates, based on coplanar waveguide (CPW) and microstrip line (MSL) structures, have been considered to realize the MMW interconnects. Electromagnetic (EM) simulations have been performed to design and compare the performances of these inductive lines. It is shown that the inductive quality factor of a CPW-based inductive transmission line ([Formula: see text] is more than 3.4 times higher than its MSL counterpart @ 65[Formula: see text]GHz. A CPW structure, with an optimized ground-equalizing metal strip density to achieve the highest inductive quality factor, is therefore a preferred choice for the design of MMW interconnects, compared to an MSL. The LNA achieves a measured forward gain of [Formula: see text][Formula: see text]dB with good input and output impedance matching of better than [Formula: see text][Formula: see text]dB in the desired frequency range. Covering a chip area of 1256[Formula: see text][Formula: see text]m[Formula: see text]m including the pads, the LNA dissipates a power of only 16.2[Formula: see text]mW.


Author(s):  
Sadia Farjana ◽  
Mohammadamir Ghaderi ◽  
Ashraf Uz Zaman ◽  
Sofia Rahiminejad ◽  
Per Lundgren ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5127
Author(s):  
Leif Kari

Tough, doubly cross-linked, single polymer network hydrogels with both chemical and physical cross-links display a high loss factor of the shear modulus over a broad frequency range. Physically, the high loss factor is resulting from the intensive adhesion–deadhesion activities of the physical cross-links. A high loss factor is frequently required by the optimization processes for optimal performance of a primary vibration system while adopting a dynamic vibration absorber, in particular while selecting a larger dynamic vibration absorber mass in order to avoid an excess displacement amplitude of the dynamic vibration absorber springs. The novel idea in this paper is to apply this tough polymer hydrogel as a dynamic vibration absorber spring material. To this end, a simulation model is developed while including a suitable constitutive viscoelastic material model for doubly cross-linked, single polymer network polyvinyl alcohol hydrogels with both chemical and physical cross-links. It is shown that the studied dynamic vibration absorber significantly reduces the vibrations of the primary vibration system while displaying a smooth frequency dependence over a broad frequency range, thus showing a distinguished potential for the tough hydrogels to serve as a trial material in the dynamic vibration absorbers in addition to their normal usage in tissue engineering.


2019 ◽  
Vol 6 ◽  
pp. 23
Author(s):  
Tsutomu Nagayama ◽  
Atsushi Sanada

We demonstrate broadband transmission-line illusions based on transformation electromagnetics at microwave frequencies by using the distributed full-tensor anisotropic medium. Due to an intrinsic nature of the non-resonant unit cell of the medium, the illusions operate from DC to an upper limit frequency where the homogeneous medium approximation holds. Two-dimensional groove and bump illusion media mimicking scattered waves by an original groove and a bump are designed. Their broadband and incident angle independent operations are confirmed by circuit simulations. The groove illusion medium is implemented on a dielectric substrate with microstrip-line technology, and it is confirmed experimentally by near-field measurements that the illusion medium well mimics scattered waves by the original groove in the broadband frequency range from 2.60 GHz to 4.65 GHz.


Author(s):  
Ethan Coffey ◽  
Greg Hanson ◽  
David Hill ◽  
Timothy Jones ◽  
Arnold Lumsdaine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document