Miniaturization and isolation improvement of a multiple-patch antenna system using electromagnetic bandgap structures

2013 ◽  
Vol 55 (7) ◽  
pp. 1609-1612 ◽  
Author(s):  
Asanee Suntives ◽  
Ramesh Abhari
Author(s):  
Sumon Modak ◽  
Taimoor Khan

Abstract This study presents a novel configuration of a cuboidal quad-port ultra-wideband multiple-input and multiple-output antenna with WLAN rejection characteristics. The designed antenna consists of four F-shaped elements backed by a partial ground plane. A 50 Ω microstrip line is used to feed the proposed structure. The geometry of the suggested antenna exhibits an overall size of 23 × 23 × 19 mm3, and the antenna produces an operational bandwidth of 7.6 GHz (3.1–10.7 GHz). The notched band characteristic at 5.4 GHz is accomplished by loading a pair of spiral electromagnetic bandgap structures over the ground plane. Besides this, other diversity features such as envelope correlation coefficient, and diversity gain are also evaluated. Furthermore, the proposed antenna system provides an isolation of −15 dB without using any decoupling structure. Therefore, to validate the reported design, a prototype is fabricated and characterized. The overall simulated performance is observed in very close agreement with it's measured counterpart.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 980
Author(s):  
Yu-Seong Choi ◽  
Jeong-Su Park ◽  
Wang-Sang Lee

This paper proposes a beam-reconfigurable antenna for unmanned aerial vehicles (UAVs) with wide beam coverage by applying beam-combining technology to multiple antennas with different beam patterns. The proposed multi-antenna system consists of a circular patch antenna and a low-profile printed meandered monopole antenna. For beam combining, a coplanar waveguide with ground (CPW-G) structure feeding network is proposed, and it consists of two input ports, a 90° hybrid coupler, a microstrip 90° phase delay line, and a single-pole double-throw (SPDT) switch. It performs the role of power distribution and phase adjustment, and synthesizes the broad-side beam of the monopole antenna and the end-fire beam of the patch antenna to form the directive broadside beams in four different directions. The proposed antenna system operates at 5–5.5 GHz which covers both UAV ground control frequencies (5.03–5.09 GHz) and UAV mission frequencies (5.091–5.150 GHz). The peak gain, total efficiency, and half-power beamwidth (HPBW) of the antenna system are approximately 5.8 dBi, 76%, 145° in the elevation plane, and 360° in the azimuth plane respectively. Its electrical size and weight are λ 0 × λ 0 × 0.21 λ 0 at 5.09 GHz and 19.2 g, respectively.


2016 ◽  
Vol 78 (4-3) ◽  
Author(s):  
Muhammad Aamir Afridi ◽  
Sadiq Ullah

In this paper, a 2.42 GHz micro-strip patch antenna is designed and analyzed using a conventional and a metamaterial (artificial) based Electromagnetic Bandgap (EBG) ground planes. The directivity, return loss and VSWR of the conventional 2.42 GHz patch antenna were found to be 5.23dB, -13.2dB, and 1.5 respectively. The proposed antenna then being mounted on a Mushroom-type EBG structures (artificial ground plane) produced better far-field performance as compared to conventional counterpart i.e. the return loss, directivity and VSWR were improved by 80.3%, 58.5% and 24.6%. The WLAN antenna was designed and tested on a miniaturized slotted EBG structure. The slotted EBG was 11.4 % compact as compared to the mushroom structure. The directivity, return loss and VSWR of the antenna using the slotted EBG are improved by be 51%, 31.8%, 15.4% respectively as compared to the patch conventional WLAN patch antenna. The antenna can be used for WLAN applications.


YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 790-807
Author(s):  
N Parthiban ◽  
◽  
M Mohamed Ismail ◽  

Microstrip antenna is an essential choice for Ultra Wide Band (UWB) applications of its light weight, low profile and easy to form antenna arrays. However, the design of microstrip patch antenna bandwidth is greatly affects by the dielectric substrate material (FR4). In this research, the bandwidth enhancement of MPA was designed by minimizing the dimension of Defected GP (DGP) in GP for Ultra Wide Band wireless applications. But, the antenna design complexity increases with the number of an operating frequency band. In this research, the MPA was designed as small as size of 10×13×1.6 mm and operates on frequency band between 3.1GHz to 10.6GHz for VSWR less than 2. The microstrip patch antenna was designed at 3.1GHz to 10.6GHz using High-Frequency Structure Simulator (HFSS) software. The simulation result shows that the proposed microstrip patch antenna obtained <-10dB of return loss from 3.1GHz to 10.6GHz throughout the frequency range. The measured result proves that the proposed microstrip patch antenna has better characteristics to fulfill the requirements of UWB applications


2014 ◽  
Vol 18 (2) ◽  
pp. 70
Author(s):  
Jijun Wang ◽  
Zhipan Zhu ◽  
Yanrong Zhang ◽  
Leilei Gong ◽  
Yuntuan Fang

In this paper, a composite patch antenna based on lefthanded material (LHM) with near zero index (NZI) is presented.This composite patch antenna is designed by assembling splitresonant rings (SRRs) and metal strips on the substrates. Thismultilayer composite structure results in a metamaterial with NZInear 13.89 GHz. A method of finite difference time domain(FDTD) is used. The results show that the composite antenna’sgain improves 0.61 times, and its bandwidth adds 2.95 timescompared to the conventional antenna’s ones. The results indicatethat this composite patch antenna system can reduce return loss ofthe antenna and increase the gain obviously.


2019 ◽  
Vol 55 (25) ◽  
pp. 1326-1329 ◽  
Author(s):  
T. Nguyen ◽  
T. Karacolak

Sign in / Sign up

Export Citation Format

Share Document