Training deep‐learning segmentation models from severely limited data

2021 ◽  
Author(s):  
Yao Zhao ◽  
Dong Joo Rhee ◽  
Carlos Cardenas ◽  
Laurence E. Court ◽  
Jinzhong Yang
2021 ◽  
Vol 11 (15) ◽  
pp. 7046
Author(s):  
Jorge Francisco Ciprián-Sánchez ◽  
Gilberto Ochoa-Ruiz ◽  
Lucile Rossi ◽  
Frédéric Morandini

Wildfires stand as one of the most relevant natural disasters worldwide, particularly more so due to the effect of climate change and its impact on various societal and environmental levels. In this regard, a significant amount of research has been done in order to address this issue, deploying a wide variety of technologies and following a multi-disciplinary approach. Notably, computer vision has played a fundamental role in this regard. It can be used to extract and combine information from several imaging modalities in regard to fire detection, characterization and wildfire spread forecasting. In recent years, there has been work pertaining to Deep Learning (DL)-based fire segmentation, showing very promising results. However, it is currently unclear whether the architecture of a model, its loss function, or the image type employed (visible, infrared, or fused) has the most impact on the fire segmentation results. In the present work, we evaluate different combinations of state-of-the-art (SOTA) DL architectures, loss functions, and types of images to identify the parameters most relevant to improve the segmentation results. We benchmark them to identify the top-performing ones and compare them to traditional fire segmentation techniques. Finally, we evaluate if the addition of attention modules on the best performing architecture can further improve the segmentation results. To the best of our knowledge, this is the first work that evaluates the impact of the architecture, loss function, and image type in the performance of DL-based wildfire segmentation models.


Author(s):  
Wenjia Cai ◽  
Jie Xu ◽  
Ke Wang ◽  
Xiaohong Liu ◽  
Wenqin Xu ◽  
...  

Abstract Anterior segment eye diseases account for a significant proportion of presentations to eye clinics worldwide, including diseases associated with corneal pathologies, anterior chamber abnormalities (e.g. blood or inflammation) and lens diseases. The construction of an automatic tool for the segmentation of anterior segment eye lesions will greatly improve the efficiency of clinical care. With research on artificial intelligence progressing in recent years, deep learning models have shown their superiority in image classification and segmentation. The training and evaluation of deep learning models should be based on a large amount of data annotated with expertise, however, such data are relatively scarce in the domain of medicine. Herein, the authors developed a new medical image annotation system, called EyeHealer. It is a large-scale anterior eye segment dataset with both eye structures and lesions annotated at the pixel level. Comprehensive experiments were conducted to verify its performance in disease classification and eye lesion segmentation. The results showed that semantic segmentation models outperformed medical segmentation models. This paper describes the establishment of the system for automated classification and segmentation tasks. The dataset will be made publicly available to encourage future research in this area.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243253
Author(s):  
Qiang Lin ◽  
Mingyang Luo ◽  
Ruiting Gao ◽  
Tongtong Li ◽  
Zhengxing Man ◽  
...  

SPECT imaging has been identified as an effective medical modality for diagnosis, treatment, evaluation and prevention of a range of serious diseases and medical conditions. Bone SPECT scan has the potential to provide more accurate assessment of disease stage and severity. Segmenting hotspot in bone SPECT images plays a crucial role to calculate metrics like tumor uptake and metabolic tumor burden. Deep learning techniques especially the convolutional neural networks have been widely exploited for reliable segmentation of hotspots or lesions, organs and tissues in the traditional structural medical images (i.e., CT and MRI) due to their ability of automatically learning the features from images in an optimal way. In order to segment hotspots in bone SPECT images for automatic assessment of metastasis, in this work, we develop several deep learning based segmentation models. Specifically, each original whole-body bone SPECT image is processed to extract the thorax area, followed by image mirror, translation and rotation operations, which augments the original dataset. We then build segmentation models based on two commonly-used famous deep networks including U-Net and Mask R-CNN by fine-tuning their structures. Experimental evaluation conducted on a group of real-world bone SEPCT images reveals that the built segmentation models are workable on identifying and segmenting hotspots of metastasis in bone SEPCT images, achieving a value of 0.9920, 0.7721, 0.6788 and 0.6103 for PA (accuracy), CPA (precision), Rec (recall) and IoU, respectively. Finally, we conclude that the deep learning technology have the huge potential to identify and segment hotspots in bone SPECT images.


2020 ◽  
Vol 8 (6) ◽  
Author(s):  
Alexander E. White ◽  
Rebecca B. Dikow ◽  
Makinnon Baugh ◽  
Abigail Jenkins ◽  
Paul B. Frandsen

Reports ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 26 ◽  
Author(s):  
Govind Chada

Increasing radiologist workloads and increasing primary care radiology services make it relevant to explore the use of artificial intelligence (AI) and particularly deep learning to provide diagnostic assistance to radiologists and primary care physicians in improving the quality of patient care. This study investigates new model architectures and deep transfer learning to improve the performance in detecting abnormalities of upper extremities while training with limited data. DenseNet-169, DenseNet-201, and InceptionResNetV2 deep learning models were implemented and evaluated on the humerus and finger radiographs from MURA, a large public dataset of musculoskeletal radiographs. These architectures were selected because of their high recognition accuracy in a benchmark study. The DenseNet-201 and InceptionResNetV2 models, employing deep transfer learning to optimize training on limited data, detected abnormalities in the humerus radiographs with 95% CI accuracies of 83–92% and high sensitivities greater than 0.9, allowing for these models to serve as useful initial screening tools to prioritize studies for expedited review. The performance in the case of finger radiographs was not as promising, possibly due to the limitations of large inter-radiologist variation. It is suggested that the causes of this variation be further explored using machine learning approaches, which may lead to appropriate remediation.


2021 ◽  
Vol 3 (2) ◽  
pp. 294-312
Author(s):  
Muhammad E. H. Chowdhury ◽  
Tawsifur Rahman ◽  
Amith Khandakar ◽  
Mohamed Arselene Ayari ◽  
Aftab Ullah Khan ◽  
...  

Plants are a major source of food for the world population. Plant diseases contribute to production loss, which can be tackled with continuous monitoring. Manual plant disease monitoring is both laborious and error-prone. Early detection of plant diseases using computer vision and artificial intelligence (AI) can help to reduce the adverse effects of diseases and also overcome the shortcomings of continuous human monitoring. In this work, we propose the use of a deep learning architecture based on a recent convolutional neural network called EfficientNet on 18,161 plain and segmented tomato leaf images to classify tomato diseases. The performance of two segmentation models i.e., U-net and Modified U-net, for the segmentation of leaves is reported. The comparative performance of the models for binary classification (healthy and unhealthy leaves), six-class classification (healthy and various groups of diseased leaves), and ten-class classification (healthy and various types of unhealthy leaves) are also reported. The modified U-net segmentation model showed accuracy, IoU, and Dice score of 98.66%, 98.5%, and 98.73%, respectively, for the segmentation of leaf images. EfficientNet-B7 showed superior performance for the binary classification and six-class classification using segmented images with an accuracy of 99.95% and 99.12%, respectively. Finally, EfficientNet-B4 achieved an accuracy of 99.89% for ten-class classification using segmented images. It can be concluded that all the architectures performed better in classifying the diseases when trained with deeper networks on segmented images. The performance of each of the experimental studies reported in this work outperforms the existing literature.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6311
Author(s):  
Woldeamanuel Minwuye Mesfin ◽  
Soojin Cho ◽  
Jeongmin Lee ◽  
Hyeong-Ki Kim ◽  
Taehoon Kim

The objective of this study is to evaluate the feasibility of deep-learning-based segmentation of the area covered by fresh and young concrete in the images of construction sites. The RGB images of construction sites under various actual situations were used as an input into several types of convolutional neural network (CNN)–based segmentation models, which were trained using training image sets. Various ranges of threshold values were applied for the classification, and their accuracy and recall capacity were quantified. The trained models could segment the concrete area overall although they were not able to judge the difference between concrete of different ages as professionals can. By increasing the threshold values for the softmax classifier, the cases of incorrect prediction as concrete became almost zero, while some areas of concrete became segmented as not concrete.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 136361-136373
Author(s):  
Imran Ahmed ◽  
Misbah Ahmad ◽  
Fakhri Alam Khan ◽  
Muhammad Asif

Author(s):  
Jianqing Huang ◽  
Hecong Liu ◽  
Jinghang Dai ◽  
Weiwei Cai

Sign in / Sign up

Export Citation Format

Share Document