Optimizing MRI signal-to-noise ratio for quadrature unmatched RF coils: Two preamplifiers are better than one

1996 ◽  
Vol 36 (1) ◽  
pp. 104-110 ◽  
Author(s):  
Birgit L. Sorgenfrei ◽  
William A. Edelstein
2021 ◽  
Vol 16 (3) ◽  
pp. 24-27
Author(s):  
E. Obi ◽  
B.O. Sadiq ◽  
O.S . Zakariyya ◽  
A. Theresa

Multiple-input multiple-output (MIMO) systems are increasingly becoming popular due to their ability to multiply data rates without any expansion in the bandwidth. This is critical in this era of high-data rate applications but limited bandwidth. MIMO detectors play an important role in ensuring effective communication in such systems and as such the performance of the following are compared in this paper with respect to symbol error rate (SER) versus signal-to-noise ratio (SNR): maximum likelihood (ML), zero forcing (ZF), minimum mean square error (MMSE) and vertical Bell laboratories layered space time (VBLAST). Results showed that the ML has the best performance as it has the least Symbol Error Rate (SER) for all values of Signal to Noise Ratio (SNR) as it was 91.9% better than MMSE, 99.6% better than VBLAST and 99.8% better than ZF at 20db for a 2x2 antenna configuration., it can also be deduced that the performance increased with increase in number of antenna for all detectors except the V-BLAST detector.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000283-000294 ◽  
Author(s):  
Chad Morgan ◽  
Adam Healey

Standards bodies are now examining how to increase the throughput of high-density backplane links to 25 Gbps. One method for achieving this is to construct premium backplane links utilizing advanced materials and connectors. Another approach is to re-use legacy backplanes by employing PAM-4 signaling at half of the baud rate. For PAM-4 to offer an advantage over NRZ, the signal-to-noise ratio (SNR) at the slicer input, i.e. after equalization, must be ∼9.5 dB better than NRZ to overcome loss of separation between signal levels. This paper will examine 25 Gbaud NRZ and 12.5 Gbaud PAM-4 signaling across varying levels of channel insertion loss and crosstalk. The paper provides a reliable reference for engineers to use when considering when it is appropriate to use NRZ signaling at 25 Gbaud and when it is appropriate to use PAM-4 signaling at 12.5 Gbaud for successful high-density backplane operation.


2009 ◽  
Vol 18 (10) ◽  
pp. 1505-1509
Author(s):  
◽  
CIRO BIGONGIARI

The ANTARES underwater neutrino telescope has been completed in May 2008 and is now taking data continuously. Thanks to its very good angular resolution (better than 0.3° for neutrinos with energy above 10 TeV) ANTARES is especially suited for the search of astrophysical point-like sources of high energy neutrinos. Data taken with a limited detector (5 out of 12 lines) between January and December 2007 have been analyzed to look for a possible neutrino excess from a list of prospective neutrino sources. In the case of transient sources, like GRBs, the short duration of the expected neutrino signal can be exploited to enhance the signal to noise ratio. ANTARES strategy for both steady and transient point-like sources is discussed. The methodology adopted and the results obtained are shown.


1960 ◽  
Vol 38 (3) ◽  
pp. 346-353 ◽  
Author(s):  
D. M. Hunten

The unit contains 30 low-leakage condensers which can store a signal for several hours if necessary. If the signal is repeated over and over, the successive scans can be added in and the signal-to-noise ratio builds up as the square root of the number of repetitions. In principle, the final signal-to-noise ratio is only slightly better than would be obtained from a single scan stretched out to fill the same total time, but in practice the result may be considerably better, especially if the signal fluctuates slowly. It has been used successfully in several investigations of twilight spectra with photoelectric and photoconductive spectrometers. The original version took 1 minute per scan and was rather bulky; a recent modification can scan 32 channels in 10 seconds if required.


2015 ◽  
Vol 6 (3) ◽  
Author(s):  
Febri Liantoni ◽  
Nanik Suciati ◽  
Chastine Fatichah

Abstract. Ant Colony Optimization (ACO) is an optimization algorithm which can be used for image edge detection. In traditional ACO, the initial ant are randomly distributed. This condition can cause an imbalance ants distribution. Based on this problem, a modified ant distribution in ACO is proposed to optimize the deployment of ant based gradient. Gradient value is used to determine the placement of the ants. Ants are not distributed randomly, but are placed in the highest gradient. This method is expected to be used to optimize the path discovery. Based on the test results, the use of the proposed ACO modification can obtain an average value of the Peak Signal to Noise Ratio (PSNR) of 12.724. Meanwhile, the use of the traditional ACO can obtain an average value of PSNR of 12.268. These results indicate that the ACO modification is capable of generating output image better than traditional ACO in which ants are initially distributed randomly.Keywords: Ant Colony Optimization, gradient, Edge Detection, Peak Signal to Noise Ratio Abstrak. Ant Colony Optimization (ACO) merupakan algoritma optimasi, yang dapat digunakan untuk deteksi tepi pada citra Pada ACO tradisional, semut awal disebarkan secara acak. Kondisi ini dapat menyebabkan ketidakseimbangan distribusi semut. Berdasarkan permasalahan tersebut, modifikasi distribusi semut pada ACO diusulkan untuk mengoptimalkan penempatan semut berdasarkan gradient. Nilai gradient digunakan untuk menentukan penempatan semut. Semut tidak disebar secara acak akan tetapi ditempatkan di gradient tertinggi. Cara ini diharapkan dapat digunakan untuk optimasi penemuan jalur. Berdasarkan hasil uji coba, dengan menggunakan ACO modifikasi yang diusulkan dapat diperoleh nilai rata-rata Peak Signal to Noise Ratio (PSNR) 12,724. Sedangkan, menggunakan ACO tradisional diperoleh nilai rata-rata PSNR 12,268. Hasil ini menunjukkan bahwa ACO modifikasi mampu menghasilkan citra keluaran yang lebih baik dibandingkan ACO tradisional yang sebaran semut awalnya dilakukan secara acak.Kata Kunci: Ant Colony Optimization, gradient, deteksi tepi, Peak Signal to Noise Ratio


2012 ◽  
Vol 23 (08) ◽  
pp. 590-605 ◽  
Author(s):  
Richard H. Wilson ◽  
Rachel McArdle ◽  
Kelly L. Watts ◽  
Sherri L. Smith

Background: The Revised Speech Perception in Noise Test (R-SPIN; Bilger, 1984b) is composed of 200 target words distributed as the last words in 200 low-predictability (LP) and 200 high-predictability (HP) sentences. Four list pairs, each consisting of two 50-sentence lists, were constructed with the target word in a LP and HP sentence. Traditionally the R-SPIN is presented at a signal-to-noise ratio (SNR, S/N) of 8 dB with the listener task to repeat the last word in the sentence. Purpose: The purpose was to determine the practicality of altering the R-SPIN format from a single SNR paradigm into a multiple SNR paradigm from which the 50% points for the HP and LP sentences can be calculated. Research Design: Three repeated measures experiments were conducted. Study Sample: Forty listeners with normal hearing and 184 older listeners with pure-tone hearing loss participated in the sequence of experiments. Data Collection and Analysis: The R-SPIN sentences were edited digitally (1) to maintain the temporal relation between the sentences and babble, (2) to establish the SNRs, and (3) to mix the speech and noise signals to obtain SNRs between –1 and 23 dB. All materials were recorded on CD and were presented through an earphone with the responses recorded and analyzed at the token level. For reference purposes the Words-in-Noise Test (WIN) was included in the first experiment. Results: In Experiment 1, recognition performances by listeners with normal hearing were better than performances by listeners with hearing loss. For both groups, performances on the HP materials were better than performances on the LP materials. Performances on the LP materials and on the WIN were similar. Performances at 8 dB S/N were the same with the traditional fixed level presentation and the descending presentation level paradigms. The results from Experiment 2 demonstrated that the four list pairs of R-SPIN materials produced good first approximation psychometric functions over the –4 to 23 dB S/N range, but there were irregularities. The data from Experiment 2 were used in Experiment 3 to guide the selection of the words to be used at the various SNRs that would provide homogeneous performances at each SNR and would produce systematic psychometric functions. In Experiment 3, the 50% points were in good agreement for the LP and HP conditions within both groups of listeners. The psychometric functions for List Pairs 1 and 2, 3 and 4, and 5 and 6 had similar characteristics and maintained reasonable separations between the HP and LP functions, whereas the HP and LP functions for List Pair 7 and 8 bisected one another at the lower SNRs. Conclusions: This study indicates that the R-SPIN can be configured into a multiple SNR paradigm. A more in-depth study with the R-SPIN materials is needed to develop lists that are systematic and reasonably equivalent for use on listeners with hearing loss. The approach should be based on the psychometric characteristics of the 200 HP and 200 LP sentences with the current R-SPIN lists discarded. Of importance is maintaining the synchrony between the sentences and their accompanying babble.


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Author(s):  
D. C. Joy ◽  
R. D. Bunn

The information available from an SEM image is limited both by the inherent signal to noise ratio that characterizes the image and as a result of the transformations that it may undergo as it is passed through the amplifying circuits of the instrument. In applications such as Critical Dimension Metrology it is necessary to be able to quantify these limitations in order to be able to assess the likely precision of any measurement made with the microscope.The information capacity of an SEM signal, defined as the minimum number of bits needed to encode the output signal, depends on the signal to noise ratio of the image - which in turn depends on the probe size and source brightness and acquisition time per pixel - and on the efficiency of the specimen in producing the signal that is being observed. A detailed analysis of the secondary electron case shows that the information capacity C (bits/pixel) of the SEM signal channel could be written as :


1979 ◽  
Vol 10 (4) ◽  
pp. 221-230 ◽  
Author(s):  
Veronica Smyth

Three hundred children from five to 12 years of age were required to discriminate simple, familiar, monosyllabic words under two conditions: 1) quiet, and 2) in the presence of background classroom noise. Of the sample, 45.3% made errors in speech discrimination in the presence of background classroom noise. The effect was most marked in children younger than seven years six months. The results are discussed considering the signal-to-noise ratio and the possible effects of unwanted classroom noise on learning processes.


Sign in / Sign up

Export Citation Format

Share Document