Application of time-domain fitting in the quantification ofin vivo1H spectroscopic imaging data sets

1992 ◽  
Vol 5 (4) ◽  
pp. 171-178 ◽  
Author(s):  
R. de Beer ◽  
A. van den Boogaart ◽  
D. van Ormondt ◽  
W. W. F. Pijnappel ◽  
J. A. den Hollander ◽  
...  
2011 ◽  
Vol 84 (2) ◽  
pp. 1063-1069 ◽  
Author(s):  
Jin Tae Kwak ◽  
Rohith Reddy ◽  
Saurabh Sinha ◽  
Rohit Bhargava

Radiology ◽  
1996 ◽  
Vol 199 (1) ◽  
pp. 37-40 ◽  
Author(s):  
C P Davis ◽  
M E Ladd ◽  
B J Romanowski ◽  
S Wildermuth ◽  
J F Knoplioch ◽  
...  

2014 ◽  
Vol 70 (1) ◽  
pp. 15-23
Author(s):  
Li Er ◽  
Zeng Xiangying

To simulate the variation of biochemical oxygen demand (BOD) in the tidal Foshan River, inverse calculations based on time domain are applied to the longitudinal dispersion coefficient (E(x)) and BOD decay rate (K(x)) in the BOD model for the tidal Foshan River. The derivatives of the inverse calculation have been respectively established on the basis of different flow directions in the tidal river. The results of this paper indicate that the calculated values of BOD based on the inverse calculation developed for the tidal Foshan River match the measured ones well. According to the calibration and verification of the inversely calculated BOD models, K(x) is more sensitive to the models than E(x) and different data sets of E(x) and K(x) hardly affect the precision of the models.


Author(s):  
Laura Dipietro ◽  
Seth Elkin-Frankston ◽  
Ciro Ramos-Estebanez ◽  
Timothy Wagner

The history of neuroscience has tracked with the evolution of science and technology. Today, neuroscience's trajectory is heavily dependent on computational systems and the availability of high-performance computing (HPC), which are becoming indispensable for building simulations of the brain, coping with high computational demands of analysis of brain imaging data sets, and developing treatments for neurological diseases. This chapter will briefly review the current and potential future use of supercomputers in neuroscience.


2020 ◽  
Vol 61 (7) ◽  
pp. 1004-1013
Author(s):  
Koralege C. Pathmasiri ◽  
Melissa R. Pergande ◽  
Fernando Tobias ◽  
Rima Rebiai ◽  
Avia Rosenhouse-Dantsker ◽  
...  

Niemann-Pick disease type C1 (NPC1) is a lipid storage disorder in which cholesterol and glycosphingolipids accumulate in late endosomal/lysosomal compartments because of mutations in the NPC1 gene. A hallmark of NPC1 is progressive neurodegeneration of the cerebellum as well as visceral organ damage; however, the mechanisms driving this disease pathology are not fully understood. Phosphoinositides are phospholipids that play distinct roles in signal transduction and vesicle trafficking. Here, we utilized a consensus spectra analysis of MS imaging data sets and orthogonal LC/MS analyses to evaluate the spatial distribution of phosphoinositides and quantify them in cerebellar tissue from Npc1-null mice. Our results suggest significant depletion of multiple phosphoinositide species, including PI, PIP, and PIP2, in the cerebellum of the Npc1-null mice in both whole-tissue lysates and myelin-enriched fractions. Additionally, we observed altered levels of the regulatory enzyme phosphatidylinositol 4-kinase type 2α in Npc1-null mice. In contrast, the levels of related kinases, phosphatases, and transfer proteins were unaltered in the Npc1-null mouse model, as observed by Western blot analysis. Our discovery of phosphoinositide lipid biomarkers for NPC1 opens new perspectives on the pathophysiology underlying this fatal neurodegenerative disease.­


2017 ◽  
Vol 12 (S333) ◽  
pp. 222-227
Author(s):  
Željko Ivezić

AbstractThe Large Synoptic Survey Telescope (LSST), a next generation astronomical survey, sited on Cerro Pachon in Chile, will provide an unprecedented amount of imaging data for studies of the faint optical sky. The LSST system includes an 8.4m (6.7m effective) primary mirror and a 3.2 Gigapixel camera with a 9.6 sq. deg. field of view. This system will enable about 10,000 sq. deg. of sky to be covered twice per night, every three to four nights on average, with typical 5-sigma depth for point sources ofr= 24.5 (AB). With over 800 observations in theugrizybands over a 10-year period, these data will enable coadded images reachingr= 27.5 (about 5 magnitudes deeper than SDSS) as well as studies of faint time-domain astronomy. The measured properties of newly discovered and known astrometric and photometric transients will be publicly reported within 60 sec after closing the shutter. The resulting hundreds of petabytes of imaging data for about 40 billion objects will be used for scientific investigations ranging from the properties of near-Earth asteroids to characterizations of dark matter and dark energy. For example, simulations estimate that LSST will discover about 1,000 quasars at redshifts exceeding 7; this sample will place tight constraints on the cosmic environment at the end of the reionization epoch. In addition to a brief introduction to LSST, I review the value of LSST data in support of epoch of reionization experiments and discuss how international participants can join LSST.


2018 ◽  
Vol 29 (24) ◽  
pp. 2959-2968 ◽  
Author(s):  
Johannes Schöneberg ◽  
Daphné Dambournet ◽  
Tsung-Li Liu ◽  
Ryan Forster ◽  
Dirk Hockemeyer ◽  
...  

New methods in stem cell 3D organoid tissue culture, advanced imaging, and big data image analytics now allow tissue-scale 4D cell biology, but currently available analytical pipelines are inadequate for handing and analyzing the resulting gigabytes and terabytes of high-content imaging data. We expressed fluorescent protein fusions of clathrin and dynamin2 at endogenous levels in genome-edited human embryonic stem cells, which were differentiated into hESC-derived intestinal epithelial organoids. Lattice light-sheet imaging with adaptive optics (AO-LLSM) allowed us to image large volumes of these organoids (70 × 60 × 40 µm xyz) at 5.7 s/frame. We developed an open-source data analysis package termed pyLattice to process the resulting large (∼60 Gb) movie data sets and to track clathrin-mediated endocytosis (CME) events. CME tracks could be recorded from ∼35 cells at a time, resulting in ∼4000 processed tracks per movie. On the basis of their localization in the organoid, we classified CME tracks into apical, lateral, and basal events and found that CME dynamics is similar for all three classes, despite reported differences in membrane tension. pyLattice coupled with AO-LLSM makes possible quantitative high temporal and spatial resolution analysis of subcellular events within tissues.


Sign in / Sign up

Export Citation Format

Share Document