Method for parameterization of impedance-based models with time domain data sets

2013 ◽  
pp. 3-16
Author(s):  
Meike Slocinski
2017 ◽  
Vol 5 (3) ◽  
pp. T313-T325 ◽  
Author(s):  
Dominique Fournier ◽  
Seogi Kang ◽  
Michael S. McMillan ◽  
Douglas W. Oldenburg

We focus on the task of finding a 3D conductivity structure for the DO-18 and DO-27 kimberlites, historically known as the Tli Kwi Cho (TKC) kimberlite complex in the Northwest Territories, Canada. Two airborne electromagnetic (EM) surveys are analyzed: a frequency-domain DIGHEM and a time-domain VTEM survey. Airborne time-domain data at TKC are particularly challenging because of the negative values that exist even at the earliest time channels. Heretofore, such data have not been inverted in three dimensions. In our analysis, we start by inverting frequency-domain data and positive VTEM data with a laterally constrained 1D inversion. This is important for assessing the noise levels associated with the data and for estimating the general conductivity structure. The analysis is then extended to a 3D inversion with our most recent optimized and parallelized inversion codes. We first address the issue about whether the conductivity anomaly is due to a shallow flat-lying conductor (associated with the lake bottom) or a vertical conductive pipe; we conclude that it is the latter. Both data sets are then cooperatively inverted to obtain a consistent 3D conductivity model for TKC that can be used for geologic interpretation. The conductivity model is then jointly interpreted with the density and magnetic susceptibility models from a previous paper. The addition of conductivity enriches the interpretation made with the potential fields in characterizing several distinct petrophysical kimberlite units. The final conductivity model also helps better define the lateral extent and upper boundary of the kimberlite pipes. This conductivity model is a crucial component of the follow-up paper in which our colleagues invert the airborne EM data to recover the time-dependent chargeability that further advances our geologic interpretation.


2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


2014 ◽  
Vol 70 (1) ◽  
pp. 15-23
Author(s):  
Li Er ◽  
Zeng Xiangying

To simulate the variation of biochemical oxygen demand (BOD) in the tidal Foshan River, inverse calculations based on time domain are applied to the longitudinal dispersion coefficient (E(x)) and BOD decay rate (K(x)) in the BOD model for the tidal Foshan River. The derivatives of the inverse calculation have been respectively established on the basis of different flow directions in the tidal river. The results of this paper indicate that the calculated values of BOD based on the inverse calculation developed for the tidal Foshan River match the measured ones well. According to the calibration and verification of the inversely calculated BOD models, K(x) is more sensitive to the models than E(x) and different data sets of E(x) and K(x) hardly affect the precision of the models.


1988 ◽  
Vol 42 (5) ◽  
pp. 715-721 ◽  
Author(s):  
Francis R. Verdun ◽  
Carlo Giancaspro ◽  
Alan G. Marshall

A frequency-domain Lorentzian spectrum can be derived from the Fourier transform of a time-domain exponentially damped sinusoid of infinite duration. Remarkably, it has been shown that even when such a noiseless time-domain signal is truncated to zero amplitude after a finite observation period, one can determine the correct frequency of its corresponding magnitude-mode spectral peak maximum by fitting as few as three spectral data points to a magnitude-mode Lorentzian spectrum. In this paper, we show how the accuracy of such a procedure depends upon the ratio of time-domain acquisition period to exponential damping time constant, number of time-domain data points, computer word length, and number of time-domain zero-fillings. In particular, we show that extended zero-filling (e.g., a “zoom” transform) actually reduces the accuracy with which the spectral peak position can be determined. We also examine the effects of frequency-domain random noise and roundoff errors in the fast Fourier transformation (FFT) of time-domain data of limited discrete data word length (e.g., 20 bit/word at single and double precision). Our main conclusions are: (1) even in the presence of noise, a three-point fit of a magnitude-mode spectrum to a magnitude-mode Lorentzian line shape can offer an accurate estimate of peak position in Fourier transform spectroscopy; (2) the results can be more accurate (by a factor of up to 10) when the FFT processor operates with floating-point (preferably double-precision) rather than fixed-point arithmetic; and (3) FFT roundoff errors can be made negligible by use of sufficiently large (> 16 K) data sets.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3521 ◽  
Author(s):  
Funa Zhou ◽  
Po Hu ◽  
Shuai Yang ◽  
Chenglin Wen

Rotating machinery usually suffers from a type of fault, where the fault feature extracted in the frequency domain is significant, while the fault feature extracted in the time domain is insignificant. For this type of fault, a deep learning-based fault diagnosis method developed in the frequency domain can reach high accuracy performance without real-time performance, whereas a deep learning-based fault diagnosis method developed in the time domain obtains real-time diagnosis with lower diagnosis accuracy. In this paper, a multimodal feature fusion-based deep learning method for accurate and real-time online diagnosis of rotating machinery is proposed. The proposed method can directly extract the potential frequency of abnormal features involved in the time domain data. Firstly, multimodal features corresponding to the original data, the slope data, and the curvature data are firstly extracted by three separate deep neural networks. Then, a multimodal feature fusion is developed to obtain a new fused feature that can characterize the potential frequency feature involved in the time domain data. Lastly, the fused new feature is used as the input of the Softmax classifier to achieve a real-time online diagnosis result from the frequency-type fault data. A simulation experiment and a case study of the bearing fault diagnosis confirm the high efficiency of the method proposed in this paper.


2018 ◽  
Vol 8 (1) ◽  
pp. 44
Author(s):  
Lutfiah Ismail Al turk

In this paper, a Nonhomogeneous Poisson Process (NHPP) reliability model based on the two-parameter Log-Logistic (LL) distribution is considered. The essential model’s characteristics are derived and represented graphically. The parameters of the model are estimated by the Maximum Likelihood (ML) and Non-linear Least Square (NLS) estimation methods for the case of time domain data. An application to show the flexibility of the considered model are conducted based on five real data sets and using three evaluation criteria. We hope this model will help as an alternative model to other useful reliability models for describing real data in reliability engineering area.


Sign in / Sign up

Export Citation Format

Share Document