scholarly journals Deglacial development of (sub) sea surface temperature and salinity in the subarctic northwest Pacific: Implications for upper-ocean stratification

2013 ◽  
Vol 28 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Jan-Rainer Riethdorf ◽  
Lars Max ◽  
Dirk Nürnberg ◽  
Lester Lembke-Jene ◽  
Ralf Tiedemann
2021 ◽  
Vol 4 ◽  
pp. 99-111
Author(s):  
Y.A Pavroz . ◽  

An attempt is made to develop a method for long-term forecasting of the ice breakup time for the Vyatka River basin, to identify the impact of the distribution of sea surface temperature and geopotential height in the informative regions at the levels H100 and H500 over the Northern Hemisphere on the river ice breakup. The location and boundaries of the informative regions in the fields of H100 and H500 were revealed by the discriminant analysis, the EOF expansion coefficients of the fields of anomalies of monthly mean values of H100 and H500 for January and February and the anomalies of monthly mean sea surface temperature in the North Atlantic and Northwest Pacific were used as potential predictors. The stepwise regression analysis allowed deriving good and satisfactory (S/σ = 0.45–0.73) complex prognostic equations for forecasting the ice breakup time for the Vyatka River basin. The essential influence of H100 and H500 geopotential height fields and the spatial distribution of sea surface temperature anomalies in the North Atlantic and Northwest Pacific in January and February on the river ice breakup time is revealed. It is proposed to improve the method by considering the impact of air temperature, maximum ice thickness per winter, and other indirect characteristics on the processes of river ice breakup in the Vyatka River basin. Keywords: ice regime, long-range forecast, river ice breakup, expansion coefficients, geopotential height fields, spring ice phenomena, energy-active zones of the oceans, complex prognostic equation


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Lianxin Zhang ◽  
Changlong Guan ◽  
Chunjian Sun ◽  
Siyu Gao ◽  
Shaomei Yu

A one-dimensional turbulent model is used to investigate the effect of sea spray mediated turbulent fluxes on upper ocean temperature during the passage of typhoon Yagi over the Kuroshio Extension area in 2006. Both a macroscopical sea spray momentum flux algorithm and a microphysical heat and moisture flux algorithm are included in this turbulent model. Numerical results show that the model can well reproduce the upper ocean temperature, which is consistent with the data from the Kuroshio Extension Observatory. Besides, the sea surface temperature is decreased by about 0.5°C during the typhoon passage, which also agrees with the sea surface temperature dataset derived from Advanced Microwave Scanning Radiometer for the Earth Observing and Reynolds. Diagnostic analysis indicates that sea spray acts as an additional source of the air-sea turbulent fluxes and plays a key role in increasing the turbulent kinetic energy in the upper ocean, which enhances the temperature diffusion there. Therefore, sea spray is also an important factor in determining the upper mixed layer depth during the typhoon passage.


Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 83-97
Author(s):  
Zhiyuan Wu ◽  
Changbo Jiang ◽  
Mack Conde ◽  
Jie Chen ◽  
Bin Deng

Abstract. The variability of the sea surface temperature (SST) in the northwest Pacific has been studied on seasonal, annual and interannual scales based on the monthly datasets of extended reconstructed sea surface temperature (ERSST) 3b (1854–2017, 164 years) and optimum interpolation sea surface temperature version 2 (OISST V2 (1988–2017, 30 years). The overall trends, spatial–temporal distribution characteristics, regional differences in seasonal trends and seasonal differences of SST in the northwest Pacific have been calculated over the past 164 years based on these datasets. In the past 164 years, the SST in the northwest Pacific has been increasing linearly year by year, with a trend of 0.033 ∘C/10 years. The SST during the period from 1870 to 1910 is slowly decreasing and staying in the range between 25.2 and 26.0 ∘C. During the period of 1910–1930, the SST as a whole maintained a low value, which is at the minimum of 164 years. After 1930, SST continued to increase until now. The increasing trend in the past 30 years has reached 0.132 ∘C/10 years, and the increasing trend in the past 10 years is 0.306 ∘C/10 years, which is around 10 times that of the past 164 years. The SST in most regions of the northwest Pacific showed a linear increasing trend year by year, and the increasing trend in the offshore region was stronger than that in the ocean and deep-sea region. The change in trend of the SST in the northwest Pacific shows a large seasonal difference, and the increasing trend in autumn and winter is larger than that in spring and summer. There are some correlations between the SST and some climate indices and atmospheric parameters; the correlations between the SST and some atmospheric parameters have been discussed, such as those of the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), Southern Oscillation Index (SOI) anomaly, total column water (TCW), NINO3.4 index, sea level pressure (SLP), precipitation, temperature at 2 m (T2) and wind speed. The lowest SST in China offshore basically occurred in February and the highest in August. The SST fluctuation in the Bohai Sea and Yellow Sea (BYS) is the largest, with a range from 5 to 22 ∘C; the SST in the East China Sea (ECS) is from 18 to 27 ∘C; the smallest fluctuations occur in the South China Sea (SCS), maintained at range of 26 to 29 ∘C. There are large differences between the mean and standard deviation in different sea regions.


Author(s):  
Y.A Pavroz . ◽  
◽  

An attempt is made to develop a method for long-term forecasting of the ice breakup time for the Vyatka River basin, to identify the impact of the distribution of sea surface temperature and geopotential height in the informative regions at the levels H100 and H500 over the Northern Hemisphere on the river ice breakup. The location and boundaries of the informative regions in the fields of H100 and H500 were revealed by the discriminant analysis, the EOF expansion coefficients of the fields of anomalies of monthly mean values of H100 and H500 for January and February and the anomalies of monthly mean sea surface temperature in the North Atlantic and Northwest Pacific were used as potential predictors. The stepwise regression analysis allowed deriving good and satisfactory (S/σ = 0.45–0.73) complex prognostic equations for forecasting the ice breakup time for the Vyatka River basin. The essential influence of H100 and H500 geopotential height fields and the spatial distribution of sea surface temperature anomalies in the North Atlantic and Northwest Pacific in January and February on the river ice breakup time is revealed. It is proposed to improve the method by considering the impact of air temperature, maximum ice thickness per winter, and other indirect characteristics on the processes of river ice breakup in the Vyatka River basin. Keywords: ice regime, long-range forecast, river ice breakup, expansion coefficients, geopotential height fields, spring ice phenomena, energy-active zones of the oceans, complex prognostic equation


2020 ◽  
Author(s):  
Ruyu Gan

<p><span> models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). </span><span>sea surface temperature</span></p>


Sign in / Sign up

Export Citation Format

Share Document