Green recycling of aluminum plastic packaging waste by solid‐state shear milling and 3D printing for thermal conductive composites

Author(s):  
Baojie Wei ◽  
Shuangqiao Yang ◽  
Qi Wang
2018 ◽  
Vol 6 (41) ◽  
pp. 11209-11218 ◽  
Author(s):  
Shuangqiao Yang ◽  
Wenzhi Li ◽  
Shibing Bai ◽  
Qi Wang

High-performance thermal conductive and electromagnetic interference shielding composites from multilayer plastic packaging waste and expanded graphite.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4492
Author(s):  
Eric Ofosu Kissi ◽  
Robin Nilsson ◽  
Liebert Parreiras Nogueira ◽  
Anette Larsson ◽  
Ingunn Tho

Fused deposition modelling-based 3D printing of pharmaceutical products is facing challenges like brittleness and printability of the drug-loaded hot-melt extruded filament feedstock and stabilization of the solid-state form of the drug in the final product. The aim of this study was to investigate the influence of the drug load on printability and physical stability. The poor glass former naproxen (NAP) was hot-melt extruded with Kollidon® VA 64 at 10–30% w/w drug load. The extrudates (filaments) were characterised using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). It was confirmed that an amorphous solid dispersion was formed. A temperature profile was developed based on the results from TGA, DSC, and DMA and temperatures used for 3D printing were selected from the profile. The 3D-printed tablets were characterised using DSC, X-ray computer microtomography (XµCT), and X-ray powder diffraction (XRPD). From the DSC and XRPD analysis, it was found that the drug in the 3D-printed tablets (20 and 30% NAP) was amorphous and remained amorphous after 23 weeks of storage (room temperature (RT), 37% relative humidity (RH)). This shows that adjusting the drug ratio can modulate the brittleness and improve printability without compromising the physical stability of the amorphous solid dispersion.


2021 ◽  
Vol 2 (2) ◽  
pp. 117-126
Author(s):  
Titien Yusnita ◽  
Febri Palupi Muslikhah ◽  
Machyudin Agung Harahap

The problem of waste is always an interesting thing that never runs out to find a solution. One of them is plastic packaging waste that is widely used by the community and cannot be decomposed again by nature. In line with the SDGs issue, Indonesia is the second largest country that disposes of plastic waste in the world after China. This is very dangerous for the natural beauty of Indonesia's vast seas, and destroys a very diverse ecosystem. Existing plastic waste that comes from household waste, it can be used easily and cheaply into Ecobrick. Ecobrick is a term for the result of managing plastic waste into a brick that can be used as useful items such as chairs or tables. This plastic waste management training activity was carried out for housewives in Cibitung Tengah Village, Bogor Regency to find out the use of plastic waste that can be recycled to be used as useful goods. In addition, to provide awareness of the importance of sorting household waste in order to help preserve nature. Keywords: ecobricks, management, household, plastic waste  


Author(s):  
Rishi Thakkar ◽  
Yu Zhang ◽  
Jiaxiang Zhang ◽  
Mohammed Maniruzzaman

AbstractThis study demonstrated the first case of combining novel continuous granulation with powder-based pharmaceutical 3-dimensional (3D) printing processes to enhance the dissolution rate and physical properties of a poorly water-soluble drug. Powder bed fusion (PBF) and binder jetting 3D printing processes have gained much attention in pharmaceutical dosage form manufacturing in recent times. Although powder bed-based 3D printing platforms have been known to face printing and uniformity problems due to the inherent poor flow properties of the pharmaceutical physical mixtures (feedstock). Moreover, techniques such as binder jetting currently do not provide any solubility benefits to active pharmaceutical ingredients (APIs) with poor aqueous solubility (>40% of marketed drugs). For this study, a hot-melt extrusion-based versatile granulation process equipped with UV-Vis process analytical technology (PAT) tools for the in-line monitoring of critical quality attributes (i.e., solid-state) of indomethacin was developed. The collected granules with enhanced flow properties were mixed with vinylpyrrolidone-vinyl acetate copolymer and a conductive excipient for efficient sintering. These mixtures were further characterized for their bulk properties observing an excellent flow and later subjected to a PBF-3D printing process. The physical mixtures, processed granules, and printed tablets were characterized using conventional as well as advanced solid-state characterization. These characterizations revealed the amorphous nature of the drug in the processed granules and printed tablets. Further, the in vitro release testing of the tablets with produced granules as a reference standard depicted a notable solubility advantage (100% drug released in 5 minutes at >pH 6.8) over the pure drug and the physical mixture. Our developed system known as DosePlus combines innovative continuous granulation and PBF-3D printing process which can potentially improve the physical properties of the bulk drug and formulations in comparison to when used in isolation. This process can further find application in continuous manufacturing of granules and additive manufacturing of pharmaceuticals to produce dosage forms with excellent uniformity and solubility advantage.Abstract Figure


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 635 ◽  
Author(s):  
Jinjie Luo ◽  
Haibao Wang ◽  
Duquan Zuo ◽  
Anping Ji ◽  
Yaowen Liu

As an advanced manufacturing technology that has been developed in recent years, three-dimensional (3D) printing of macromolecular materials can create complex-shaped components that cannot be realized by traditional processing. However, only a few types of macromolecular materials are suitable for 3D printing: the structure must have a single function, and manufacturing macromolecular functional devices is difficult. In this study, using poly lactic acid (PLA) as a matrix, conductive composites were prepared by adding various contents of multi-walled carbon nanotubes (MWCNTs). The printability and properties of MWCNT/PLA composites with different MWCNT proportions were studied by using the fused deposition modeling (FDM) processing technology of 3D printing. The experimental results showed that high conductivity can be realized in 3D-printed products with a composite material containing 5% MWCNTs; its conductivity was 0.4 ± 0.2 S/cm, its tensile strength was 78.4 ± 12.4 MPa, and its elongation at break was 94.4% ± 14.3%. It had a good melt flow rate and thermal properties, and it enabled smooth printing, thus meeting all the requirements for the 3D printing of consumables.


Sign in / Sign up

Export Citation Format

Share Document