Silane coupling agent modification on interlaminar shear strength of carbon fiber/epoxy/nano-CaCo3 composites

2012 ◽  
Vol 33 (10) ◽  
pp. 1755-1758 ◽  
Author(s):  
Hongwei He ◽  
Kaixi Li
2020 ◽  
Vol 55 (1) ◽  
pp. 27-38
Author(s):  
Yasuka Nassho ◽  
Kazuaki Sanada

The purpose of this study is to improve interlaminar shear strength and self-healing efficiency of spread carbon fiber (SCF)/epoxy (EP) laminates containing microcapsules. Microencapsulated healing agents were embedded within the laminates to impart a self-healing functionality. Self-healing was demonstrated on short beam shear specimens, and the healing efficiency was evaluated by strain energies of virgin and healed specimens. The effects of microcapsule concentration and diameter on apparent interlaminar shear strength and healing efficiency were discussed. Moreover, damaged areas after short beam shear tests were examined by an optical microscope to investigate the relation between the microstructure and the healing efficiency of the laminates. The results showed that the stiffness and the apparent interlaminar shear strength of the laminates increased as the microcapsule concentration and diameter decreased. However, the healing efficiency decreased with decreasing the microcapsule concentration and diameter.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 3686-3691 ◽  
Author(s):  
XIAOJUN LV ◽  
QI ZHANG ◽  
GUOJUN XIE ◽  
GUANJIE LIU

In order to understand the effect of natural environmental factors on the carbon fiber/epoxy composites, the degradation of carbon fiber/epoxy composite was studied. The specimens were exposed in a Xe lamp chamber and suffered to ultraviolet light radiation, temperature and/or humidity conditions. The results show that the radiation, temperature and/or humidity could cause extensive corrosion to the surface and interior of the carbon/epoxy composite and attack the interface between matrix and carbon fiber, resulting in an obvious reduction of the transverse tensile strength and interlaminar shear strength. On the contrary, the longitudinal transverse shear strength was not affected much by the radiation, temperature and/or humidity. The results indicate that the radiation, temperature and/or humidity can result in the corrosion of the carbon/epoxy composite and consequently affect the mechanical properties of the carbon/epoxy composite partially.


Sign in / Sign up

Export Citation Format

Share Document