Water absorption and mechanical properties of PP/HIPS hybrid composites filled with wood flour

2015 ◽  
Vol 38 (5) ◽  
pp. 863-869 ◽  
Author(s):  
Nadir Ayrilmis ◽  
Münir Taşdemir ◽  
Turgay Akbulut

2012 ◽  
Vol 03 (05) ◽  
pp. 317-325 ◽  
Author(s):  
Pradeep Upadhyaya ◽  
Manoj Garg ◽  
Vijai Kumar ◽  
Ajay K. Nema


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.



Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1501 ◽  
Author(s):  
Soundhar Arumugam ◽  
Jayakrishna Kandasamy ◽  
Ain Umaira Md Shah ◽  
Mohamed Thariq Hameed Sultan ◽  
Syafiqah Nur Azrie Safri ◽  
...  

This study aims to explore the mechanical properties of hybrid glass fiber (GF)/sisal fiber (SF)/chitosan (CTS) composite material for orthopedic long bone plate applications. The GF/SF/CTS hybrid composite possesses a unique sandwich structure and comprises GF/CTS/epoxy as the external layers and SF/CTS/epoxy as the inner layers. The composite plate resembles the human bone structure (spongy internal cancellous matrix and rigid external cortical). The mechanical properties of the prepared hybrid sandwich composites samples were evaluated using tensile, flexural, micro hardness, and compression tests. The scanning electron microscopic (SEM) images were studied to analyze the failure mechanism of these composite samples. Besides, contact angle (CA) and water absorption tests were conducted using the sessile drop method to examine the wettability properties of the SF/CTS/epoxy and GF/SF/CTS/epoxy composites. Additionally, the porosity of the GF/SF/CTS composite scaffold samples were determined by using the ethanol infiltration method. The mechanical test results show that the GF/SF/CTS hybrid composites exhibit the bending strength of 343 MPa, ultimate tensile strength of 146 MPa, and compressive strength of 380 MPa with higher Young’s modulus in the bending tests (21.56 GPa) compared to the tensile (6646 MPa) and compressive modulus (2046 MPa). Wettability study results reveal that the GF/SF/CTS composite scaffolds were hydrophobic (CA = 92.41° ± 1.71°) with less water absorption of 3.436% compared to the SF/CTS composites (6.953%). The SF/CTS composites show a hydrophilic character (CA = 54.28° ± 3.06°). The experimental tests prove that the GF/SF/CTS hybrid composite can be used for orthopedic bone fracture plate applications in future.



Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 18 ◽  
Author(s):  
Anna Kufel ◽  
Stanisław Kuciel

The aim of the research was to study the effects of adding natural fillers to a polypropylene (PP) matrix on mechanical and physical properties of hybrid composites. The 10%, 15%, and 20% by weight basalt fibers (BF) and ground hazelnut shells (HS) were added to the PP matrix. Composites were produced by making use of an injection molding method. Tensile strength, tensile modulus, strain at break, Charpy impact strength, and the coefficient of thermal expansion were determined. The influence of temperature, thermal aging, and water absorption on mechanical properties was also investigated. In addition, short-time creep tests were carried out. To characterize the morphology and the filler distribution within the matrix, a scanning electron microscope (SEM) was used. The results showed that the addition of the two types of filler enhanced mechanical properties. Furthermore, improvements in thermal stability were monitored. After water absorption, the changes in the tensile properties of the tested composites were moderate. However, thermal aging caused a decrease in tensile strength and tensile modulus.



Holzforschung ◽  
2014 ◽  
Vol 68 (8) ◽  
pp. 933-940 ◽  
Author(s):  
Yao Chen ◽  
Nicole M. Stark ◽  
Mandla A. Tshabalala ◽  
Jianmin Gao ◽  
Yongming Fan

Abstract The water sorption and mechanical properties of wood-plastic composites (WPCs) made of extracted and delignified wood flour (WF) has been investigated. WF was prepared by extraction with the solvent systems toluene/ethanol (TE), acetone/water (AW), and hot water (HW), and its delignification was conducted by means of sodium chlorite/acetic acid (AA) solution. A 24 full-factorial experimental design was employed to determine the effects of treatments and treatment combinations. WPCs were prepared with high-density polyethylene (HDPE) and treated WF was prepared by means of extrusion followed by injection molding, and the water absorption characteristics and mechanical properties of the products were evaluated. WPCs produced with extracted WF had lower water absorption rates and better mechanical properties than those made of untreated WF. WPCs containing delignified WF had higher water absorption rates and improved mechanical performance compared with those made of untreated WF.



2015 ◽  
Vol 37 (10) ◽  
pp. 3015-3024 ◽  
Author(s):  
Aida A. Pérez-Fonseca ◽  
Martín Arellano ◽  
Denis Rodrigue ◽  
Rubén González-Núñez ◽  
Jorge R. Robledo-Ortíz




2020 ◽  
Vol 41 (4) ◽  
pp. 1255-1264 ◽  
Author(s):  
Ng Lin Feng ◽  
Sivakumar Dhar Malingam ◽  
Chen Wei Ping ◽  
Nadlene Razali


2015 ◽  
Author(s):  
A. K. Zykova ◽  
P. V. Pantyukhov ◽  
N. N. Kolesnikova ◽  
A. A. Popov ◽  
A. A. Olkhov


2021 ◽  
pp. X
Author(s):  
Athijayamani AYYANAR ◽  
Ramkumar GP ◽  
Alavudeen AZIZ BATCHA ◽  
Thiruchitrambalam MANI

Mechanical properties of vinyl ester hybrid composites reinforced with alkali treated Smilax zeylanica and sisal fibers were studied at wet condition in the present communication. Hybrid composites were fabricated by using a simple hand lay up technique based on three different fiber loading of 25, 35, and 45 wt.% with alkali treated fibers. Hybrid composite specimens were then subjected to the water absorption test to observe the behaviours of composite specimens at wet condition under mechanical loads such as tensile, flexural and impact. Water absorption test was carried out in two ways at distilled water environment at room temperature. First way test was conducted for 10 days to observe the percentage of water particle absorption of hybrid composites. Second way test was performed for 5 days to determine the mechanical properties of hybrid composites at wet condition to observe its durability when they are used in outdoor applications. Mechanical properties of hybrid composite specimens at wet conditions were compared with the dry composite specimens. Experimental results showed that the percentage of the water particle absorption in the alkali treated hybrid fiber composites is lower as compared to the untreated hybrid fiber composites. Mechanical properties of alkali treated hybrid fiber composites at wet condition are slightly reduced as compared to the treated hybrid fiber composite at dry condition. As a result, it is observed that the resistance for the penetration of the water particles is higher for the alkali treated smilax zeylanica and sisal fibers reinforced vinyl ester hybrid composites. The fracture surfaces of the hybrid composite specimens were examined by scanning electron microscope to understand the effects of water absorption on the mechanical properties.



Sign in / Sign up

Export Citation Format

Share Document