Influence of particle size on water absorption capacity and mechanical properties of polyethylene-wood flour composites

Author(s):  
A. K. Zykova ◽  
P. V. Pantyukhov ◽  
N. N. Kolesnikova ◽  
A. A. Popov ◽  
A. A. Olkhov
2011 ◽  
Vol 43 (1) ◽  
pp. 81-94 ◽  
Author(s):  
M. Vlasova ◽  
I. Rosales ◽  
M. Kakazey ◽  
Parra Parra ◽  
R. Guardian

Porous ceramics (bricks) was obtained using red clay, milled fusible cullet, and biowaste in the temperature range 950-1000?C. The high content of water in biowaste eliminates the necessity of introducing water in soft mud forming of bricks. The porosity, water absorption capacity, and mechanical properties of the prepared ceramics depend on content of milled cullet and sintering temperature.


Author(s):  
Youssef El Moussi ◽  
Laurent Clerc ◽  
Jean-Charles Benezet

The use of bio-based concretes performed with lignocellulosic aggregates constitute an interesting solution for reducing the energy consumption, greenhouse gas emissions and CO2 generated by the building sector. Indeed, bio-based materials could be used as an alternative of traditional materials such as expended polystyrene and mineral resources (e.g. glass and rock wools) for insulation. Furthermore, these bio-based concretes are known for their interesting insulation properties, indeed they allow to enhance thermal properties of buildings and enables moisture management which lead to design efficient building materials. For this purpose, bio-based concrete using rice straw as aggregate are studied in this present work. The impact of the characteristics of rice straw particle (particle size distribution, bulk density, and water absorption capacity, etc.) on both the mechanical and thermal properties of the bio-based concrete are investigated. Five formulations of rice straw concrete are examined, compared and then classified in terms of insulation properties and mechanical properties. The assessments are based on the measurement of density and thermal conductivity. The variation of compressive strength in function of the characteristics (mean particle length) of rice straw particle are assessed and discussed. The investigation covers also the porosity and density. Tests are also carried out on agricultural by-products with a view to highlight their chemical, physical and structural proprieties. The results show that the use of large particles with low water absorption capacity induce lighter concretes with the density between 339 and 505 kg/m3 and lead to a high compressive strength with a high mechanical deformability. Furthermore, it appears that an increase in the average length of rice straw particle lead to decrease of thermal conductivity of bio-based concretes. It varies from 0.062 to 0.085 W/(m.K).


2021 ◽  
Vol 889 (1) ◽  
pp. 012060
Author(s):  
Raghav Sharma ◽  
Tarun Sharma

Abstract The problem of pollution is increasing daily due to excessive production and improper disposal of the waste. some waste like ashes and stone powder can be easily utilize in the concrete or with any other construction material like paver block or bricks. To utilize material like marble powder bagasse ash and rice straw effectively the experimental study of Earth compressed bricks is conducted. This paper deals about the mechanical properties of earth compressed bricks which are made up of soil and the add-ons are marble powder, bagasse ash and rice straw fiber with different ratios of combination. This ratios are for marble powder 20%, 30% and 40%. for bagasse ash it is 7% 10% and 13% and for rice straw it is .5%, .75% and 1%. The compression property of bricks is increased when the marble powder is increased with less water absorption in soil because waste marble powder does not absorbs water and due to its fine partical size it fills the voids in the bricks and creates good packing of the bricks. Water is absorbed by Rice Straw and bagasse ash which results in increase of the water absorption capacity of earth compressed bricks.


2021 ◽  
pp. 60-71
Author(s):  
Assiéné Agamou Julien Armel ◽  
Fombang Nig Edith ◽  
Mbofung Carl Moses

Objective: This study aims to determine the influence of the contents of compounds and particle size on the functional properties of leaves powders of M. oleifera. Methodology: The leaves were collected from three farms in the localities of Mbouda and Maroua and processed in powders. The proximate composition, some functional properties such as particle size, true Water Absorption Capacity (WACt), apparent Water Absorption Capacity (WACa), Water Solubility Index (WSI), Oil Holding Capacity (OHC), and Bulk density were determined. Results: The mean contents of young and mature leaves powders are 24.96 ± 0.29 and 23.13 ± 0.50 g/100 DM in total proteins; 34.26 ± 0.52 and 29.11 ± 1.44 g/100g DM in available carbohydrate, 8.34 ± 0.64 and 8.34 ± 0.68 g/100g DM in total lipids, 8.75 ± 0.74 and 9.08 ± 0.48 g/100g DM in total ash, 21.13 ± 1.34 and 27.14 ± 1.04 g/100g DM in total fibers, respectively. The particle size of powders is majority large. The fiber's contents significantly affect the increase of rehydration properties and the OHC, while the large particle size, the density. Values of WACt and WACa are 27.02 ± 0.20 and 32.88 ± 1.24 % in young leaves and 28.98 ± 0.15 and 35.88 ± 1.02 % in mature leaves, respectively. The WSI and OHC are 3.02 ± 0.06 and 257 ± 1% in young leaves and 3.5 ± 0.04 and 261 ± 2 % in mature leaves, respectively. The Bulk density is 0.42 ± 0.01 g/ml in young leaves and 0.39 ± 0.01 in mature leaves. Conclusion: Functional properties of M. oleifera leave powders do not always depend on the contents of compounds and particle size distribution.


Author(s):  
C. O. Chude ◽  
C. C. Nwagbo ◽  
E. F. Okpalanma ◽  
B. O. Uba

Lactic fermentation is commonly employed to improve protein digestibility and overall nutritional quality of grains foods. This study evaluated the functional and rheological properties of flour samples from Bambara groundnut fermented with Lactobacillus plantarum [NRRL B-4306] and Lactobacillus fermentum [NRRL B-1932] obtained from the United States Department of Agriculture. Functional profile such as particle size index, water absorption capacity, swelling capacity, and least gelation concentration of the flour were determined; as well, amylograph and maturograph evaluations were used to determine the rheological properties and the results presented as average, minimum, and maxi­mum values. Particle size determination observed that 150, 125, 105 µ orifice did not readily accommodate particles from the non-inoculated samples while the inoculated samples passed through 150 and 125 µ but did not readily pass through 105 µ orifice. Bioprocess with lactic acid bacteria increased the water absorption capacity of the flour samples from 346.5 to 386.4%, the least gelation concentration decreased from 5.3 to 4.1%, while swelling capacity increased from 14.9 to 23.2 mg/100 g for non-inoculated and inoculated flours, respectively. Rheological investigations show evaluations for amylograph and maturogram determinations. Values obtained for amylograph indicate that temperature at start of gelatinization was peak at 63.8 and 63.00C for non-fermented and LAB-fermented flour with no significant (p ˂ 0.05) difference, while temperature at maximum viscosity and maximum viscosity had significant (p ˂ 0.05) values of 92.1 and 76.00C, as well as 730 and 265 brabender units (BU), respectively. Thus, amylograph quality of the fermented flour sample was indicated by the maximum viscosity which is significantly higher in the case of non-inoculated flour sample. The maturograph evaluation also recorded the maturation behavior of the dough prepared from the test flours after the proofing time (fermentation rest) by means of a sensing probe which records the elasticity of the mature dough every 2 min and produces the typical zigzag form of the maturogram. This action was recorded in maturograph units (MU) on the strip-chart with values of 44 and 28 min for final proof time, 750 and 610 MU for dough level, 210 and 220 MU for dough elasticity, as well as 10 and 12 min for proofing stability, determined respectively for non-fermented and LAB-fermented flour samples. LAB-fermentation demonstrated to improve the functionality and rheology of Bambara groundnut flour and the production process could be further controlled to achieve products of optimal quality.


2021 ◽  
Vol 1 (1) ◽  
pp. 32-35
Author(s):  
Marine Ashot Kalantaryan ◽  
Avetik Artavazd Arzumanyan

Water absorption capacity  of   Irind  mine pumice depending on the particle size and absorption time is presented in the  paper.  Irind pumice  is an aluminosilicate rock, with well-developed porosity, mechanical strength, high buoyancy, chemically inert, eco-friendly and  exhibits sufficient water absorption capacities. The examination of the pumice by X-ray diffractometry has shown that it is a volcanic rock and is composed of cristobalite and coesite. The following particle sizes were selected for the study: 1.5… 2.0 mm, 2.5 ... 5.0 mm.  Water absorption capacity of pumice was determined depending on the absorption period. The maximum water absorption was  observed for particle  sizes ranging from 2.5 to 5.0 mm.


Proceedings ◽  
2020 ◽  
Vol 53 (1) ◽  
pp. 13
Author(s):  
María Dolores Jiménez ◽  
Manuel Oscar Lobo ◽  
Norma Cristina Sammán

The aim of this work was to compare different cooking–drying methods to obtain dehydrated baby purees. Flours of quinoa and amaranth (native and germinated) were used to formulate them. Dry powders (DPs) were obtained by lyophilization (LD), convection (CD), and extrusion (ED). Proximal composition, particle size and morphology, water absorption capacity, and solubility were evaluated in DPs. Color, texture profile (TP), and sensory characteristics were determined in fresh pure and rehydrated powders (RPs). The LD particles were smaller and homogeneous; CD showed collapsed particles, and ED presented agglomerated particles. Different drying methods influenced the rehydration properties of DPs, as well as the color, TP, and sensory evaluation of RPs. The best method to obtain dehydrated baby purees was extrusion.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Muhammad Aprizal Syaifudin ◽  
M Dirhamsyah ◽  
Evy Wardenaar

This study aims to examine the physical and mechanical properties of cement boards from sawing waste based on raw material composition and particle size, as well  to get the best sawing waste particle size and raw material composition according to JIS A5417-1992 standard. The research was carried out at the Wood Workshop Laboratory, Wood Technology Laboratory, Wood Processing Laboratory and PT Duta Pertiwi Nusantara Pontianak. This study uses a completely randomized factorial design (CRD) with two factors, namely factor A (Particle Size) and factor B (composition of cement). The results showed the average value of density ranged from 0.6878 to 0.8094 gr / cm3, moisture content value ranged from 6.7057 to 10.0246%, thickess swelling value ranged from 0.3996 to 0.8773%, water absorption value ranged from 27.8949 - 49.0375%, MOE ranged from 412.6563-1411.7847 kg / cm2 and MOR value ranged from 2.1529-4.5909 kg / cm2. The particle size that affects the physical properties is the value of water absorption, while the composition of the material that affects the physical properties is the density, water content, thickness development and water absorption capacity. The particle size and composition of the material which influence the mechanical properties, namely the value of the flexural firmness and fracture firmness. Based on the results of cement board testing with particle composition and cement (1:2) with particle size passing 10 mesh restrained 20 mesh yields the best physical properties of cement board that meet the standards of JIS A 5417: 1992, while none of the cement boards MOE and MOR meet the testing standards mechanical properties according to JIS A 5417: 1992.Keywords: Cement board, composition of cement, particle size, sawing waste


Sign in / Sign up

Export Citation Format

Share Document