scholarly journals Hybrid Composites Based on Polypropylene with Basalt/Hazelnut Shell Fillers: The Influence of Temperature, Thermal Aging, and Water Absorption on Mechanical Properties

Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 18 ◽  
Author(s):  
Anna Kufel ◽  
Stanisław Kuciel

The aim of the research was to study the effects of adding natural fillers to a polypropylene (PP) matrix on mechanical and physical properties of hybrid composites. The 10%, 15%, and 20% by weight basalt fibers (BF) and ground hazelnut shells (HS) were added to the PP matrix. Composites were produced by making use of an injection molding method. Tensile strength, tensile modulus, strain at break, Charpy impact strength, and the coefficient of thermal expansion were determined. The influence of temperature, thermal aging, and water absorption on mechanical properties was also investigated. In addition, short-time creep tests were carried out. To characterize the morphology and the filler distribution within the matrix, a scanning electron microscope (SEM) was used. The results showed that the addition of the two types of filler enhanced mechanical properties. Furthermore, improvements in thermal stability were monitored. After water absorption, the changes in the tensile properties of the tested composites were moderate. However, thermal aging caused a decrease in tensile strength and tensile modulus.


MRS Advances ◽  
2017 ◽  
Vol 2 (47) ◽  
pp. 2545-2550 ◽  
Author(s):  
Nicholas G. Betancourt ◽  
Duncan E. Cree

ABSTRACTPoly (lactic acid) (PLA) bioplastics are recyclable and biodegradable thermoplastics. They are derived from environmentally friendly sources such as potatoes, cornstarch and sugarcane. However, PLA is inherently brittle with low impact strength. The goal of this study is to improve mechanical properties of PLA by the addition of calcium carbonate (CaCO3) fillers. PLA composites were prepared by injection molding conventional limestone (LS) and white chicken eggshell (WES) powders with particle sizes of 63 μm and 32 μm in amounts of 5 wt. %, 10 wt. % and 20 wt. %. Mechanical properties such as, tensile strength, tensile modulus, and Charpy impact strengths were investigated. These three properties were evaluated and the results statistically analyzed using ANOVA F-test. For both particle sizes, the tensile strength decreased as the filler content increased, but was highest for a filler loading of 5 wt. %. In general, the 32 μm powder fillers had better tensile strengths than 63 μm sized fillers. The tensile modulus increased with filler content and was highest at 20 wt. % for both particle sizes. The LS/PLA composites had better toughness than the WES/PLA composites. The particle filler morphology and fractured surfaces were observed by scanning electron microscopy (SEM) and determined to have well dispersed particles with smooth fractured surfaces. Water absorption behavior of PLA/CaCO3 composites were studied by immersion in distilled water at room temperature for 56 days. Virgin PLA absorbed the least amount of water while the water absorption of CaCO3 composites were a function of powder type and content.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.



Phenolic based PALF/nanoclay hybrid composites was prepared by adding Montmorillonite (MMT) as filler at different loading (1%, 2% and 3%) by using hot press technique. Obtained results indicated that adding MMT in PALF/phenolic composites considerably improves the tensile and flexural strength and modulus. Tensile properties showed that the tensile strength increased after adding MMT though tensile modulus decreased. Flexural strength and modulus were enhanced after adding MMT up to 2%, further addition of MMT declined the properties. 2% MMT showed better tensile and flexural properties. 3% MMT/PALF hybrid composite showed no further improvement in tensile properties after 2% MMT, however the flexural properties were reduced. 3% MMT did not improved much maybe agglomeration accrued. PALF/nanoclay/phenolic hybrid composites revealed good mechanical properties that encourage to use for structural purposes.



2013 ◽  
Vol 785-786 ◽  
pp. 209-213
Author(s):  
Qi Zhong Huang ◽  
Zhao Hui Hu

Water absorption behavior and mechanical properties variation of the carbon fiber reinforced epoxy matrix composites (CFRP) immersed into artificial seawater were investigated by experiments. The rate of water absorption of the composite specimens is gradually reducing as the duality of immersion increasing. Due to the reversible and irreversible changes in the resin matrix and the failure of the fiber/matrix interface, the tensile strength, the flexural strength, and the ILSS of the composite specimens after 70 days immersion decreased 9.3%, 13%, and 17% respectively. And the tensile modulus and the flexural modulus the specimens after desorption were 83% and 70% of the original state, respectively



2020 ◽  
Vol 8 (5) ◽  
pp. 3586-3590

Natural fiberss represent a good renewable and biodegradable alternative the.. most common man-made reinforcement. Among various fibers, natural fibers are used due to their advantages, easy availability, low density, low production cost and better mechanical properties. The aim of this work is to study the degradation of hybrid composites when exposed to moisture condition at room temperature. Hand lay-up method is used to prepare the laminates with the J-G FRP and epoxy matrix. Water absorption test is carried out by immersing the specimen in water tub at room temperature for different time periods. Mechanical properties.. like Tensile strength, Flexural strength, Impact strength and Hardness are evaluated by performing different tests on laminates. The mechanicall properties of water immersed specimen were tested and compared with dry samples as per the ASTM standard. The composites specimens with J-G FRE matrix absorbs less amount of water when compared to polyester specimens. Equilibrium moisture content and water absorption curves were determined. J-G FRE matrix composite was found to have less water absorption and decreased impact strength is 0.19J / mm2, decreased tensile strength is 61.11MPa, decreased flexural strength is 31.29MPa and decreased stiffness is 13HN compared to J-G FRP matrix composite.



2014 ◽  
Vol 1025-1026 ◽  
pp. 215-220 ◽  
Author(s):  
Sasirada Weerasunthorn ◽  
Pranut Potiyaraj

Fumed silica particles (SiO2) were directly added into poly (butylene succinate) (PBS) by melt mixing process. The effects of amount of fumed silica particles on mechanical properties of PBS/fumed silica composites, those are tensile strength, tensile modulus, impact strength as well as flexural strength, were investigated. It was found that the mechanical properties decreased with increasing fumed silica loading (0-3 wt%). In order to increase polymer-filler interaction, fumed silica was treated with 3-glycidyloxypropyl trimethoxysilane (GPMS), and its structure was analyzed by FT-IR spectrophotometry. The PBS/modified was found to possess better tensile strength, tensile modulus, impact strength and flexural strength that those of PBS/fumed silica composites.



2020 ◽  
Vol 35 (1) ◽  
pp. 61-70
Author(s):  
Na Young Park ◽  
Young Chan Ko ◽  
Lili Melani ◽  
Hyoung Jin Kim

AbstractFor the mechanical properties of paper, tensile testing has been widely used. Among the tensile properties, the tensile stiffness has been used to determine the softness of low-density paper. The lower tensile stiffness, the greater softness of paper. Because the elastic region may not be clearly defined in a load-elongation curve, it is suggested to use the tensile modulus which is defined as the slope between the two points in the curve. The two points which provide the best correlation with subjective softness evaluation should be selected. Low-density paper has a much lower tensile strength, but much larger elongation at the break. It undergoes a continuous structural change during mechanical testing. The degree of the structural change should depend on tensile conditions such as the sample size, the gauge length, and the rate of elongation. For low-density paper, the tensile modulus and the tensile strength should be independent of each other. The structure efficiency factor (SEF) is defined as a ratio of the tensile strength to the tensile modulus and it may be used a guideline in developing superior low-density paper products.



2008 ◽  
Vol 1 (2) ◽  
pp. 113-120 ◽  
Author(s):  
A. C. Marques ◽  
J. L. Akasaki ◽  
A. P. M. Trigo ◽  
M. L. Marques

In this work it was evaluated the influence tire rubber addition in mortars in order to replace part of the sand (12% by volume). It was also intended to verify if the tire rubber treatment with NaOH saturated aqueous solution causes interference on the mechanical properties of the mixture. Compressive strength, splitting tensile strength, water absorption, modulus of elasticity, and flow test were made in specimens of 5cmx10cm and the tests were carried out to 7, 28, 56, 90, and 180 days. The results show reduction on mechanical properties values after addition of tire rubber and decrease of the workability. It was also observed that the tire rubber treatment does not cause any alteration on the results compared to the rubber without treatment.



2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
J. Sahari ◽  
M. A. Maleque

The mechanical properties of oil palm shell (OPS) composites were investigated with different volume fraction of OPS such as 0%, 10%, 20%, and 30% using unsaturated polyester (UPE) as a matrix. The results presented that the tensile strength and tensile modulus of the UPE/OPS composites increased as the OPS loading increased. The highest tensile modulus of UPE/OPS was obtained at 30 vol% of OPS with the value of 8.50 GPa. The tensile strength of the composites was 1.15, 1.17, and 1.18 times higher than the pure UPE matrix for 10, 20, and 30 vol% of OPS, respectively. The FTIR spectra showed the change of functional group of composites with different volume fractions of OPS. SEM analysis shows the filler pull-out present in the composites which proved the poor filler-matrix interfacial bonding.



2012 ◽  
Vol 03 (05) ◽  
pp. 317-325 ◽  
Author(s):  
Pradeep Upadhyaya ◽  
Manoj Garg ◽  
Vijai Kumar ◽  
Ajay K. Nema


Sign in / Sign up

Export Citation Format

Share Document