Effect of graphene nanoparticles on the strength of sandwich structure inspired by dragonfly wings under low‐velocity impact

2021 ◽  
Vol 42 (10) ◽  
pp. 5249-5264
Author(s):  
Mehdi Rezvani Tavakol ◽  
Mehdi Yarmohammad Tooski ◽  
Mohsen Jabbari ◽  
Mehrdad Javadi

2006 ◽  
Vol 20 (25n27) ◽  
pp. 4384-4389 ◽  
Author(s):  
KI-WEON KANG ◽  
JUNG-KYU KIM ◽  
SEONG-KYUN CHEONG ◽  
HEUNG-SEOB KIM

The goals are to identify the strength reduction behavior and its statistical properties of sandwich structure subjected to low velocity impact. For these, the impact tests were performed using the impact tester and the damages are inspected by SAM. And then, subsequent static tests are conducted under flexural loading for the impacted structures. The strength reduction behavior is evaluated via the residual strength prediction model. Also, a statistical model is developed to identify the fluctuation of residual strength. The model well describes the distribution of residual strength.



2006 ◽  
Vol 306-308 ◽  
pp. 279-284
Author(s):  
Ki Weon Kang ◽  
Jung Kyu Kim ◽  
Heung Seob Kim

The goals of the paper are to identify the impact damage and strength reduction behavior of sandwich structure, composed of carbon/epoxy laminates skin and Nomex core with two kinds of thickness (10 and 20mm). For these, low velocity impact tests were conducted using the instrumented impact-testing machine and damages are inspected by SAM. And then, subsequent static tests are conducted under flexural loading to identify the strength reduction behavior of the impacted sandwich structures. The impact damages are mainly delamination in carbon/epoxy skin and their behavior is mostly independent of core thickness. Also, their energy absorbing behavior is identified through calculating the energy absorbed by impact damage. Finally, the strength reduction behavior is evaluated through Caprino’s model, which was proposed on the unidirectional laminates.



2018 ◽  
Vol 144 ◽  
pp. 01010
Author(s):  
M. Vishwas ◽  
Sharnappa Joladarashi ◽  
Satyabodh M. Kulkarni

Sandwich structure offer more advantage in bringing flexural stiffness and energy absorption capabilities in the application of automobile and aerospace components. This paper presents comparison study and analysis of two types of composite sandwich structures, one having Jute Epoxy skins with rubber core and the other having Glass Epoxy skins with rubber core subjected to low velocity normal impact loading. The behaviour of sandwich structure with various parameters such as energy absorption, peak load developed, deformation and von Mises stress and strain, are analyzed using commercially available analysis software. The results confirm that sandwich composite with jute epoxy skin absorbs approximately 20% more energy than glass epoxy skin. The contact force developed in jute epoxy skin is approximately 2.3 times less when compared to glass epoxy skin. von Mises stress developed is less in case of jute epoxy. The sandwich with jute epoxy skin deforms approximately 1.6 times more than that of same geometry of sandwich with glass epoxy skin. Thus exhibiting its elastic nature and making it potential candidate for low velocity impact application.



2016 ◽  
Vol 167 ◽  
pp. 23-29 ◽  
Author(s):  
C. Meola ◽  
S. Boccardi ◽  
G. Petrone ◽  
N.D. Boffa ◽  
F. Ricci ◽  
...  


2011 ◽  
Vol 462-463 ◽  
pp. 1296-1301
Author(s):  
Yulfian Aminanda ◽  
Agus Geter Edy Sutjipto ◽  
Erry Yulian Triblas Adesta ◽  
Bruno Castanie

The paper proposes first to study the behavior of honeycomb alone under uniform cyclic compression-relaxation loading. It is found that the behavior is linear until it reaches the maximum force following by a sudden drop of force and at the end following by a constant force during the compression. This force-displacement behavior is observed to be similar for all material of honeycomb such as; Nomex (with different densities and cell dimensions), fiber-glass and aluminum. From experimental study, the behavior becomes significantly non-linear in the area of constant force (flat zone) especially the spring-back behavior. A mathematical model is proposed to simulate completely compression-spring-back behavior of honeycomb. This mathematical model describes the behavior of honeycomb in compression and spring-back loading only in function of the maximum depth due to impact. The proposed mathematical model is then integrated to FEA model to simulate the spring-back behavior of sandwich structure with metallic skins and honeycomb core. After integrating the influence of skin-honeycomb interaction, a complete mathematical model which includes non-linearity of compression-spring-back behavior and rotation due to skin-honeycomb interaction is proposed to simulate the behavior of sandwich structure subjected to low energy/ low velocity impact (indentation) loading using spherical impactor. Some simulations of indentation and relaxation on sandwich structure with nomex honeycomb using different diameters of spherical indenter and different thickness of metallic skin are obtained with a good comparison with experimental results.



Sign in / Sign up

Export Citation Format

Share Document