Dynamic properties of composite panel sandwiched by a perforated fiber reinforced damping film

2021 ◽  
Author(s):  
Lihua Yuan ◽  
Sen Liang
Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2476
Author(s):  
Haiwen Li ◽  
Sathwik S. Kasyap ◽  
Kostas Senetakis

The use of polypropylene fibers as a geosynthetic in infrastructures is a promising ground treatment method with applications in the enhancement of the bearing capacity of foundations, slope rehabilitation, strengthening of backfills, as well as the improvement of the seismic behavior of geo-systems. Despite the large number of studies published in the literature investigating the properties of fiber-reinforced soils, less attention has been given in the evaluation of the dynamic properties of these composites, especially in examining damping characteristics and the influence of fiber inclusion and content. In the present study, the effect of polypropylene fiber inclusion on the small-strain damping ratio of sands with different gradations and various particle shapes was investigated through resonant column (macroscopic) experiments. The macroscopic test results suggested that the damping ratio of the mixtures tended to increase with increasing fiber content. Accordingly, a new expression was proposed which considers the influence of fiber content in the estimation of the small-strain damping of polypropylene fiber-sand mixtures and it can be complementary of damping modeling from small-to-medium strains based on previously developed expressions in the regime of medium strains. Additional insights were attempted to be obtained on the energy dissipation and contribution of fibers of these composite materials by performing grain-scale tests which further supported the macroscopic experimental test results. It was also attempted to interpret, based on the grain-scale tests results, the influence of fiber inclusion in a wide spectrum of properties for fiber-reinforced sands providing some general inferences on the contribution of polypropylene fibers on the constitutive behavior of granular materials.


2011 ◽  
Vol 12 (7) ◽  
pp. 919-926 ◽  
Author(s):  
Nadir Ayrilmis ◽  
Songklod Jarusombuti ◽  
Vallayuth Fueangvivat ◽  
Piyawade Bauchongkol ◽  
Robert H. White

2018 ◽  
Vol 55 (5) ◽  
pp. 317-324 ◽  
Author(s):  
Lei Gao ◽  
Guohui Hu ◽  
Jiaru Chen ◽  
Keyi Ren ◽  
Qiuyue Zhou ◽  
...  

2020 ◽  
Vol 5 (6) ◽  
pp. 702-707
Author(s):  
Fariborz M. Tehrani ◽  
Nazmieh A. Masswadi ◽  
Nathan M. Miller ◽  
Arezoo Sadrinezhad

This paper presents the results of an experimental study to investigate dynamic properties of polypropylene fiber-reinforced concrete beams with lightweight expanded shale (ES) and tire-derived aggregates (TDA). The mixture design followed past experiences in combining ES and TDA to enhance toughness and energy absorption in flexural behavior. The new mixture also contained 2% fiber by volume to improve such properties further. Experiments included compressive testing on cylindrical specimens as well as flexural testing on rectangular specimens to verify mechanical properties of fiber-reinforced tire-derived lightweight aggregate concrete (FRTDLWAC) subject to static loading. The results of these experiments confirmed reduction of mechanical strength due to addition of TDA and improvements in flexural strength due to fiber reinforcement. The dynamic testing included non-destructive impact loads applied to flexural specimens using a standard Schmidt hammer. A high-speed camera recorded the response of the system at 200 frames per second to allow detailed observations and measurements. Interpretation of energy-based dynamic results revealed that TDA enhances energy absorption through damping in flexural behavior. Results also indicated that fiber reinforcement reduces the amount of absorbed dynamic energy, even though; it enhances the absorbed strain energy due to crack bridging effect.


Author(s):  
Kerim Tuna Ikikardaslar ◽  
Mahmoud K. Ardebili ◽  
Feridun Delale

Glass fabric epoxy resin based composite panels enhanced with carbon nanotubes were subjected to damage while changes in electrical resistance were obtained via embedded electrodes. The purpose of the study was to develop an alternative method to Electrical Impedance Tomography (EIT), which generates conductivity field, hence, indicating presence of various damages. The current method provides damage field by taking meticulous measurements of electrical resistance of panel. The method does not monitor conductivity as in the EIT but utilizes electrical resistance changes to detect damage. In the current form, it employs a network of 64 (8 × 8 grid) electrodes distributed evenly in a typical panel instead of the boundary electrodes used in EIT. Even though 64 electrodes were employed, fewer electrodes were sufficient to produce accurate indication of damage location and its size. In previous studies percolation threshold for carbon nanotube-epoxy mixture was determined, which enabled selection of optimal CNT concentration used in manufacturing of glass fiber reinforced panels. The glass fiber reinforced panels were manufactured by vacuum infusion method. The typical panel consisted of 10 glass fabric (S-2) plies. Copper electrodes were embedded beneath the top layer fabric ply. Electrical resistances measurements were obtained using four-probe technique. In the four-probe method, two outer electrodes are used to source a known current through the panel, while the two inner electrodes provide voltage drop needed to compute resistance. The technique minimizes contact resistance between electrodes and the composite, which could be order of magnitude larger than the material resistance being measured. Electrical resistance of cured glass fiber reinforced CNT-epoxy panels was first measured without any damage. Afterwards, damages in form of circular hole were inflicted to the panel starting with 1/8” diameter and enlarging it to 1/2” in steps of 1/8”. After the largest hole, 0.04” (∼1 mm) width cracks emanating from the hole were inflicted. During all measurements, electrical current passing through the source and sink electrodes was kept constant and changes in voltage from the inner probes were recorded. The thrust of the method is to incorporate a curve fit for quantifying the changes in resistance. The method can be applied to damage quantification in panels. The smaller spaced electrode distribution was more sensitive to smaller damages as expected, but the larger spaced electrodes network was sufficiently responsive to smallest damage. Experimental results were fairly good at predicting the damage and its magnitude. Results also indicated a very good agreement with the finite element simulations of the panels. Application of this technique can be a powerful tool for real time structural health monitoring of manufactured composites.


2019 ◽  
Vol 45 (2) ◽  
pp. 1017-1033 ◽  
Author(s):  
Mehmet Bulut ◽  
Ömer Yavuz Bozkurt ◽  
Ahmet Erkliğ ◽  
Hakan Yaykaşlı ◽  
Özkan Özbek

2017 ◽  
Vol 36 (23) ◽  
pp. 1745-1755 ◽  
Author(s):  
Tsung-Han Hsieh ◽  
Yau-Shian Huang ◽  
Ming-Yuan Shen

Carbon aerogels are a promising candidate for vibration insulation due to their three-dimensional networked structures interconnected with carbon nanoparticles. However, the effect of adding carbon aerogels to polymer-based composites on their dynamic properties remains unclear. In this study, an epoxy polymer matrix was modified with carbon aerogels, and this modified matrix was used to manufacture nanocomposite plates and carbon fiber-reinforced polymer composite laminates to investigate its dynamic properties. Force vibration tests were performed on cantilever beams of the composite beams. The frequency responses of the composite beams were measured experimentally and analytically; the half-power method was used to calculate the damping ratio for each vibration mode. According to the experimental results, the presence of carbon aerogel in the nanocomposites and laminates steadily increased the natural frequencies. Differences within 10% of the natural frequencies were obtained between the experimental and numerically. Furthermore, the damping ratios of the nanocomposite and laminate beams increased significantly with the increase in aerogel loading. For a nanocomposite with 0.3 wt% aerogel, a damping ratio approximately 44% greater than that of unmodified nanocomposite was obtained. The maximum damping ratio was 4.682% for the laminate with 0.5 wt% aerogel—an 88% increase compared with the unmodified laminate.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Bao-Qing Pei ◽  
Hui Li ◽  
Gang Zhu ◽  
De-Yu Li ◽  
Yu-Bo Fan ◽  
...  

The intervertebral disc degeneration and injury are the most common spinal diseases with tremendous financial and social implications. Regenerative therapies for disc repair are promising treatments. Fiber-reinforced materials (FRMs) are a kind of composites by embedding the fibers into the matrix materials. FRMs can maintain the original properties of the matrix and enhance the mechanical properties. By now, there are still some problems for disc repair such as the unsatisfied static strength and dynamic properties for disc implants. The application of FRMs may resolve these problems to some extent. In this review, six parts such as background of FRMs in tissue repair, the comparison of mechanical properties between natural disc and some typical FRMs, the repair standard and FRMs applications in disc repair, and the possible research directions for FRMs' in the future are stated.


Sign in / Sign up

Export Citation Format

Share Document