Improvement of compatibility and mechanical properties of the poly(lactic acid)/poly(butylene adipate-co -terephthalate) blends and films by reactive extrusion with chain extender

2017 ◽  
Vol 58 (10) ◽  
pp. 1868-1878 ◽  
Author(s):  
Xin Li ◽  
Xiangyu Yan ◽  
Jia Yang ◽  
Hongwei Pan ◽  
Guanghui Gao ◽  
...  

2014 ◽  
Vol 2014 (0) ◽  
pp. _OS0602-1_-_OS0602-2_
Author(s):  
Yuma TAKEUCHI ◽  
Masahiro NISHIDA ◽  
Tetsuo TAKAYAMA ◽  
Mitsugu TODO


2021 ◽  
pp. 089270572110514
Author(s):  
Jing Sun ◽  
Anrong Huang ◽  
Shanshan Luo ◽  
Min Shi ◽  
Jiling Song ◽  
...  

Biodegradable poly(butylene adipate-co-terephthalate)/poly(lactic acid) (PBAT/PLA) composites were prepared by melt blending, and chain extender was used to improve the compatibility of PBAT/PLA blends through the chemical reaction. The influence of PLA and chain extender contents on mechanical properties, morphology, and rheological properties of PBAT/PLA composites was systematically investigated. The results revealed that the Young’s modulus and stress values gradually increased under the same strain, whereas the elongation at break decreased with the increase of chain extender content for PBAT/PLA (80/20) composites. Noteworthy, the presence of chain extender improves the interfacial compatibility between PLA and PBAT phases. At the chain extender content of 0.4, 0.6, and 0.8 wt.%, the extensional viscosity of the composites exhibited an increasing trend, whereas an obvious strain-hardening phenomenon emerged in the uniaxial extensional curves.



Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 605
Author(s):  
Alexander Piontek ◽  
Oscar Vernaez ◽  
Stephan Kabasci

Much effort has been made to enhance the toughness of poly (lactic acid) (PLA) to broaden its possible range of usage in technical applications. In this work, the compatibility of PLA with a partly bio-based ethylene-propylene-diene-rubber (EPDM) through reactive extrusion was investigated. The concentration of EPDM in the PLA matrix was in the range of up to 20%. The reactive extrusion was carried out in a conventional twin-screw extruder. Contact angle measurements were performed to calculate the interfacial tension and thus the compatibility between the phases. The thermal and mechanical properties as well as the phase morphology of the blends were characterized. A copolymer of poly (ethylene-co-methyl acrylate-co-glycidyl methacrylate) (EMAGMA) was used as compatibilizer, which leads to a significant reduction in the particle size of the dispersed rubber phase when compared with the blends without this copolymer. The use of EMAGMA combined with soybean oil (SBO) and a radical initiator enhances the elongation at break of the compound. The results indicate that the reduction of the particle size of the dispersed phase obtained with the compatibilizer alone is not sufficient to improve the mechanical properties of the blend system. The induced radical reactions also influenced the mechanical properties of the blend significantly.



Author(s):  
Jipeng Guo ◽  
Chi-Hui Tsou ◽  
Yongqi Yu ◽  
Chin-San Wu ◽  
Xuemei Zhang ◽  
...  


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 776
Author(s):  
Sixiang Zhai ◽  
Qingying Liu ◽  
Yuelong Zhao ◽  
Hui Sun ◽  
Biao Yang ◽  
...  

With the depletion of petroleum energy, the possibility of prices of petroleum-based materials increasing, and increased environmental awareness, biodegradable materials as a kind of green alternative have attracted more and more research attention. In this context, poly (lactic acid) has shown a unique combination of properties such as nontoxicity, biodegradability, biocompatibility, and good workability. However, examples of its known drawbacks include poor tensile strength, low elongation at break, poor thermal properties, and low crystallization rate. Lignocellulosic materials such as lignin and cellulose have excellent biodegradability and mechanical properties. Compounding such biomass components with poly (lactic acid) is expected to prepare green composite materials with improved properties of poly (lactic acid). This paper is aimed at summarizing the research progress of modification of poly (lactic acid) with lignin and cellulose made in in recent years, with emphasis on effects of lignin and cellulose on mechanical properties, thermal stability and crystallinity on poly (lactic acid) composite materials. Development of poly (lactic acid) composite materials in this respect is forecasted.



Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 249
Author(s):  
Han-Seung Ko ◽  
Sangwoon Lee ◽  
Doyoung Lee ◽  
Jae Young Jho

To enhance the mechanical strength and bioactivity of poly(lactic acid) (PLA) to the level that can be used as a material for spinal implants, poly(glycolic acid) (PGA) fibers and hydroxyapatite (HA) were introduced as fillers to PLA composites. To improve the poor interface between HA and PLA, HA was grafted by PLA to form HA-g-PLA through coupling reactions, and mixed with PLA. The size of the HA particles in the PLA matrix was observed to be reduced from several micrometers to sub-micrometer by grafting PLA onto HA. The tensile and flexural strength of PLA/HA-g-PLA composites were increased compared with those of PLA/HA, apparently due to the better dispersion of HA and stronger interfacial adhesion between the HA and PLA matrix. We also examined the effects of the length and frequency of grafted PLA chains on the tensile strength of the composites. By the addition of unidirectionally aligned PGA fibers, the flexural strength of the composites was greatly improved to a level comparable with human compact bone. In the bioactivity tests, the growth of apatite on the surface was fastest and most uniform in the PLA/PGA fiber/HA-g-PLA composite.



Sign in / Sign up

Export Citation Format

Share Document