Phase morphology of functionalized polyester polyurethanes. Effect of functional group concentration

2006 ◽  
Vol 55 (3) ◽  
pp. 285-291 ◽  
Author(s):  
Jelena Čulin ◽  
Ivan Šmit ◽  
Zorica Veksli ◽  
Alojz Anžlovar ◽  
Majda Žigon
Soil Systems ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 26 ◽  
Author(s):  
Sossina Gezahegn ◽  
Mohini Sain ◽  
Sean Thomas

Chars intended for use as soil amendment (“biochars”) vary greatly in their chemical and physical properties. In the present study, 19 Canadian temperate wood feedstocks were charred across a range of pyrolysis temperatures from 300–700 °C. The resulting 95 biochars were tested for their physio-chemical properties and liming capacity. Data indicated increasing base cation concentrations including Ca, Mg, and K (elements that characteristically form liming compounds, i.e., carbonates) as pyrolysis temperature increased. Acidic surface functional groups were analyzed with modified Boehm titration: Carboxylic and lactonic functional group concentrations decreased and phenolic group concentration increased with pyrolysis temperature. Functional group composition also varied greatly with feedstock: In particular, conifer-derived biochars produced at pyrolysis temperatures <500 °C showed much higher carboxylic and lactonic functional group concentrations than did angiosperm-derived biochars. Liming capacity was assessed using soil incubation experiments and was positively related to biochar pH. Both acidic surface functional group concentration and nutrient element concentration influenced biochar pH: we developed a non-linear functional relationship that predicts biochar pH from the ratio of carboxylic to phenolic moieties, and concentrations of Ca and K. Biochar’s liming components that are inherited from feedstock and predictably modified by pyrolysis temperature provide a basis for optimizing the production of biochar with desired pH and liming characteristics.


2009 ◽  
Vol 9 (15) ◽  
pp. 5417-5432 ◽  
Author(s):  
S. Gilardoni ◽  
S. Liu ◽  
S. Takahama ◽  
L. M. Russell ◽  
J. D. Allan ◽  
...  

Abstract. Submicron atmospheric aerosol particles were collected during the Megacity Initiative: Local and Global Research Observation (MILAGRO) in March 2006 at three platforms located in the Mexico City urban area (at the Mexico City Atmospheric Monitoring System building – SIMAT), at about 60 km south-east of the metropolitan area (Altzomoni in the Cortes Pass), and on board the NCAR C130 aircraft. Organic functional group and elemental composition were measured by FTIR and XRF. The average organic mass (OM) concentration, calculated as the sum of organic functional group concentrations, was 9.9 μg m−3 at SIMAT, 6.6 μg m−3 at Altzomoni, and 5.7 μg m−3 on the C130. Aliphatic saturated C-C-H and carboxylic acid COOH groups dominated OM (more than 60%) at the ground sites. On the C130, a non-acid carbonyl C=O, carboxylic acid COOH, and amine NH2 groups were observed in concentrations above detection limit only outside the Mexico City basin. From the elemental composition of SIMAT samples, we estimated the upper bound of average contribution of biomass burning to the organic carbon (OC) as 33–39%. The average OM/OC ratio was 1.8 at SIMAT, 2.0 at Altzomoni, and 1.6–1.8 on the C130. On the aircraft, higher OM/OC ratios were measured outside of the Mexico City basin, north of the urban area, along the city outflow direction. The average carboxylic acid to aliphatic saturated ratio at SIMAT reflected a local increase of oxidized functional group concentration in aged particles.


2010 ◽  
Vol 1 (2) ◽  
pp. 242 ◽  
Author(s):  
Niklaas J. Buurma ◽  
Joanne L. Cook ◽  
Christopher A. Hunter ◽  
Caroline M. R. Low ◽  
Jeremy G. Vinter

2020 ◽  
Vol 501 ◽  
pp. 144121 ◽  
Author(s):  
Waralee Dilokekunakul ◽  
Nikom Klomkliang ◽  
Poomiwat Phadungbut ◽  
Somboon Chaemchuen ◽  
Somsak Supasitmongkol

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2721
Author(s):  
Amadeja Koler ◽  
Mitja Kolar ◽  
Karel Jeřábek ◽  
Peter Krajnc

With the aim to study the influence of monomer ratio in poly(high internal phase emulsions) (polyHIPEs) on the polymer network architecture and morphology of poly(vinylbenzyl chloride-co-divinylbenzene-co-styrene) after hypercrosslinking via the internal Friedel–Crafts process, polyHIPEs with 80% overall porosity were prepared at three different initial crosslinking degrees, namely 2, 5, and 10 mol.%. All had typical interconnected cellular morphology, which was not affected by the hypercrosslinking process. Nitrogen adsorption and desorption experiments with BET and t-plot modelling were used for the evaluation of the newly introduced nanoporosity and in combination with elemental analysis for the evaluation of the extent of the hypercrosslinking. It was found that, for all three initial crosslinking degrees, the minimum amount of functional monomer, 4-vinylbenzyl chloride, was approximately 30 mol.%. Hypercrosslinking of polymers with lower concentrations of functional monomer did not result in induction of nanoporosity while the initial crosslinking degree had a much lower impact on the formation of nanoporosity.


2015 ◽  
Vol 37 (2) ◽  
pp. 179-185 ◽  
Author(s):  
О.O. Brovko ◽  
◽  
L.A. Gorbach ◽  
О.D. Lutsyk ◽  
L.M. Sergeeva ◽  
...  

2020 ◽  
Author(s):  
José Tiago Menezes Correia ◽  
Gustavo Piva da Silva ◽  
Camila Menezes Kisukuri ◽  
Elias André ◽  
Bruno Pires ◽  
...  

A metal- and catalyst-free photoinduced radical cascade hydroalkylation of 1,7-enynes has been disclosed. The process is triggered by a SET event involving a photoexcited electron-donor-aceptor complex between NHPI ester and Hantzsch ester, which decomposes to afford a tertiary radical that is readily trapped by the enyne. <a>The method provides an operationally simple, robust and step-economical approach to the construction of diversely functionalized dihydroquinolinones bearing quaternary-centers. A sequential one-pot hydroalkylation-isomerization approach is also allowed giving access to a family of quinolinones. A wide substrate scope and high functional group tolerance was observed in both approaches</a>.


Sign in / Sign up

Export Citation Format

Share Document