Protein signaling pathways in differentiation of neural stem cells

PROTEOMICS ◽  
2008 ◽  
Vol 8 (21) ◽  
pp. 4547-4559 ◽  
Author(s):  
Helena Skalnikova ◽  
Petr Vodicka ◽  
Steven Pelech ◽  
Jan Motlik ◽  
Suresh Jivan Gadher ◽  
...  
Cell Research ◽  
2008 ◽  
Vol 18 (S1) ◽  
pp. S59-S59
Author(s):  
Zhifeng Deng ◽  
Zhumin Liu ◽  
Wei Tu ◽  
Yang Wang ◽  
Yuanlei Lou

2007 ◽  
Vol 357 (4) ◽  
pp. 903-909 ◽  
Author(s):  
Myung-Shin Lim ◽  
Sang-Hyun Nam ◽  
Sun-Jung Kim ◽  
Seog-Youn Kang ◽  
Yong-Soon Lee ◽  
...  

2019 ◽  
Vol 28 (12) ◽  
pp. 1686-1699 ◽  
Author(s):  
Chongfeng Chen ◽  
Yujia Yang ◽  
Yue Yao

Hyperbaric oxygen (HBO) therapy may promote neurological recovery from hypoxic-ischemic encephalopathy (HIE). However, the therapeutic effects of HBO and its associated mechanisms remain unknown. The canonical Wnt/β-catenin signaling pathways and bone morphogenetic protein (BMP) play important roles in mammalian nervous system development. The present study examined whether HBO stimulates the differentiation of neural stem cells (NSCs) and its effect on Wnt3/β-catenin and BMP2 signaling pathways. We showed HBO treatment (2 ATA, 60 min) promoted differentiation of NSCs into neurons and oligodendrocytes in vitro. In addition, rat hypoxic-ischemic brain damage (HIBD) tissue extracts also promoted the differentiation of NSCs into neurons and oligodendrocytes, with the advantage of reducing the number of astrocytes. These effects were most pronounced when these two were combined together. In addition, the expression of Wnt3a, BMP2, and β-catenin nuclear proteins were increased after HBO treatment. However, blockade of Wnt/β-catenin or BMP signaling inhibited NSC differentiation and reduced the expression of Wnt3a, BMP2, and β-catenin nuclear proteins. In conclusion, HBO promotes differentiation of NSCs into neurons and oligodendrocytes and reduced the number of astrocytes in vitro possibly through regulation of Wnt3/β-catenin and BMP2 signaling pathways. HBO may serve as a potential therapeutic strategy for treating HIE.


2020 ◽  
Author(s):  
Kasum Azim ◽  
Filippo Calzolari ◽  
Martina Cantone ◽  
Rainer Akkermann ◽  
Julio Vera ◽  
...  

AbstractThe subventricular zone (SVZ) is the largest neurogenic niche in the adult forebrain. Notably, neural stem cells (NSCs) of the SVZ generate not only neurons, but also oligodendrocytes, the myelin-forming cells of the central nervous system. Transcriptomic studies have provided detailed knowledge of the molecular events that regulate neurogenesis, but little is understood about adult oligodendrogenesis from SVZ-NSCs. To address this, we performed in-depth single-cell transcriptomic analyses to resolve the major differences in neuronal and oligodendroglial lineages derived from the adult SVZ. A hallmark of adult oligodendrogenesis was the stage-specific expression of transcriptional modulators that regulate developmental oligodendrogenesis. Notably, divergence of the oligodendroglial lineage was distinguished by Wnt-Notch and angiogenesis-related signaling, whereas G-protein-coupled receptor signaling pathways were the major signature observed in the neurogenic lineage. Moreover, in-depth gene regulatory network analysis identified key stage-specific master regulators of the oligodendrocyte lineage and revealed new mechanisms by which signaling pathways interact with transcriptional networks to control lineage progression. Our work provides an integrated view of the multi-step differentiation process leading from NSCs to mature oligodendrocytes, by linking environmental signals to known and novel transcriptional mechanisms orchestrating oligodendrogenesis.Main pointsDistinct adult NSC populations giving rise to either oligodendrocytes or neurons can be identified by the expression of transcription factors.Gene regulatory control of oligodendrogenesis is a major fate-determinant for their generation.


2011 ◽  
Vol 140 (5) ◽  
pp. S-4
Author(s):  
Gunjan Tiwari ◽  
Maria-Adelaide Micci ◽  
Subhash Kulkarni ◽  
Laren Becker ◽  
Johann Peterson ◽  
...  

2015 ◽  
Vol 53 (6) ◽  
pp. 3771-3782 ◽  
Author(s):  
Jeong Eun Lee ◽  
Mi Sun Lim ◽  
Jae Hyun Park ◽  
Chang Hwan Park ◽  
Hyun Chul Koh

2007 ◽  
Vol 27 (11) ◽  
pp. 3982-3994 ◽  
Author(s):  
Motoshi Nagao ◽  
Michiya Sugimori ◽  
Masato Nakafuku

ABSTRACT Precise control of proliferation and differentiation of multipotent neural stem cells (NSCs) is crucial for proper development of the nervous system. Although signaling through the cell surface receptor Notch has been implicated in many aspects of neural development, its role in NSCs remains elusive. Here we examined how the Notch pathway cross talks with signaling for growth factors and cytokines in controlling the self-renewal and differentiation of NSCs. Both Notch and growth factors were required for active proliferation of NSCs, but each of these signals was sufficient and independent of the other to inhibit differentiation of neurons and glia. Moreover, Notch signals could support the clonal self-renewing growth of NSCs in the absence of growth factors. This growth factor-independent action of Notch involved the regulation of the cell cycle and cell-cell interactions. During differentiation of NSCs, Notch signals promoted the generation of astrocytes in collaboration with ciliary neurotrophic factor and growth factors. Their cooperative actions were likely through synergistic phosphorylation of signal transducer and activator of transcription 3 on tyrosine at position 705 and serine at position 727. Our data suggest that distinct intracellular signaling pathways operate downstream of Notch for the self-renewal of NSCs and stimulation of astrogenesis.


Sign in / Sign up

Export Citation Format

Share Document