A novel targeted proteomics method for identification and relative quantitation of difference in nitration degree of OGDH between healthy and diabetic mouse

PROTEOMICS ◽  
2014 ◽  
Vol 14 (21-22) ◽  
pp. 2417-2426 ◽  
Author(s):  
Qing Yu ◽  
Bin Liu ◽  
Dandan Ruan ◽  
Chao Niu ◽  
Jiayi Shen ◽  
...  
Diabetes ◽  
1997 ◽  
Vol 46 (8) ◽  
pp. 1281-1290 ◽  
Author(s):  
M. Waguri ◽  
K. Yamamoto ◽  
J. I. Miyagawa ◽  
Y. Tochino ◽  
K. Yamamori ◽  
...  

2014 ◽  
Vol 14 (3) ◽  
pp. 344-350 ◽  
Author(s):  
Yassel Gomez ◽  
Sebastien Gallien ◽  
Vivian Huerta ◽  
Jan Oostrum ◽  
Bruno Domon ◽  
...  

2021 ◽  
Author(s):  
Bochao Chen ◽  
Shumei Mao ◽  
Yanyan Sun ◽  
Liyuan Sun ◽  
Ning Ding ◽  
...  

A mitochondria-targeted near-infrared fluorescent probe NIR-V with 700 nm emission was designed to monitor cell viscosity changes, which was applied to detect the intracellular viscosity and imagine pancreatic tissue in diabetic mouse model.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aijun Qiao ◽  
Junlan Zhou ◽  
Shiyue Xu ◽  
Wenxia Ma ◽  
Chan Boriboun ◽  
...  

AbstractHepatic gluconeogenesis is essential for glucose homeostasis and also a therapeutic target for type 2 diabetes, but its mechanism is incompletely understood. Here, we report that Sam68, an RNA-binding adaptor protein and Src kinase substrate, is a novel regulator of hepatic gluconeogenesis. Both global and hepatic deletions of Sam68 significantly reduce blood glucose levels and the glucagon-induced expression of gluconeogenic genes. Protein, but not mRNA, levels of CRTC2, a crucial transcriptional regulator of gluconeogenesis, are >50% lower in Sam68-deficient hepatocytes than in wild-type hepatocytes. Sam68 interacts with CRTC2 and reduces CRTC2 ubiquitination. However, truncated mutants of Sam68 that lack the C- (Sam68ΔC) or N-terminal (Sam68ΔN) domains fails to bind CRTC2 or to stabilize CRTC2 protein, respectively, and transgenic Sam68ΔN mice recapitulate the blood-glucose and gluconeogenesis profile of Sam68-deficient mice. Hepatic Sam68 expression is also upregulated in patients with diabetes and in two diabetic mouse models, while hepatocyte-specific Sam68 deficiencies alleviate diabetic hyperglycemia and improves insulin sensitivity in mice. Thus, our results identify a role for Sam68 in hepatic gluconeogenesis, and Sam68 may represent a therapeutic target for diabetes.


Sign in / Sign up

Export Citation Format

Share Document