Effects of volumetric ice content and strain rate on shear strength under triaxial conditions for frozen soil samples

2004 ◽  
Vol 15 (3) ◽  
pp. 261-271 ◽  
Author(s):  
Lukas U. Arenson ◽  
Martha M. Johansen ◽  
Sarah M. Springman
2014 ◽  
Vol 51 (10) ◽  
pp. 1178-1195 ◽  
Author(s):  
Yuko Yamamoto ◽  
Sarah M. Springman

This paper aims to assess the characteristics of the strength and creep properties of frozen soil under triaxial stress conditions at temperatures close to the thawing point. A series of triaxial constant rate of strain (CRS) and constant stress creep (CSC) tests was carried out in axial compression on artificially frozen soil samples at temperatures between –3.0 and –0.3 °C. Acoustic emissions, with a frequency range of 100–1000 kHz, were measured using a wide-band piezoelectric sensor to understand the mechanisms of the deformation behaviour and microstructural effects that control the response of the frozen soil specimens during the tests, especially at yield and approaching failure. The test results showed that the influence of a temperature increase close to the thawing point led to reduced shear strength and increased minimum axial strain rate. The test results were compared with data from similar experiments on artificial frozen and alpine permafrost specimens obtained from a past research project. It was observed that the acoustic emission response indicates a change in the physical process of deformation between microcrack formation and the reorientation of ice granules, depending on the strain rate.


1984 ◽  
Vol 30 (106) ◽  
pp. 348-357 ◽  
Author(s):  
W.G. Nickling ◽  
L. Bennett

AbstractThe effect of ice content and normal load on the shear strength characteristics of a frozen coarse granular debris was investigated. 31 shear tests were carried out in a modified shearbox allowing a sample temperature of (–1.0 ± 0.2)° C and a load rate of 9.63 × 10−4 cm/min. The tests showed that as the ice content of the frozen debris was increased from 0% (under-saturated) to 25% (saturated), sample shear strength was markedly increased. In contrast, sample shear strength was reduced as ice content was increased from 25% (saturated) to 100% (supersaturated). The changes in shear strength with increasing ice content were attributed directly to changes in internal friction and the cohesive effects of the pore ice. The shear tests also indicate that shear strength increases with increasing normal load up to a critical limit. Above this limit, dilatancy is suppressed causing the shear strength to decrease or remain relatively constant with increased normal load.The stress-strain curves of the 31 tests indicated that samples with higher ice contents tended to reach peak strength (τP) with less displacement during shear. Moreover, the difference between τp and τr (residual strength) was lowest for pure polycrystalline ice and highest for ice-saturated samples. The Mohr-Coulomb failure envelopes displayed very distinctive parabolic curvilinearity. The degree of curvature is thought to be a function of ice creep at low normal loads and particle fracture and crushing at high normal loads.


2010 ◽  
Vol 56 (196) ◽  
pp. 333-338 ◽  
Author(s):  
Tsutomu Nakamura ◽  
Osamu Abe ◽  
Ryuhei Hashimoto ◽  
Takeshi Ohta

AbstractA new vibration apparatus for measuring the shear strength of snow has been designed and fabricated. The force applied to a snow block is calculated using Newton’s second law. Results from this apparatus concerning the dependence of the shear strength on snow density, overburden load and strain rate are in reasonable agreement with those obtained from the work of previous researchers. Snow densities ranged from 160 to 320 kg m−3. The overburden load and strain rate ranged from 1.95 × 10−1to 7.79 × 10−1kPa and 2.9 × 10−4to 9.1 × 10−3s−1respectively.


2021 ◽  
Author(s):  
Tongqiang Xiong ◽  
Jianlin Li ◽  
Lehua Wang ◽  
Huafeng Deng ◽  
Xiaoliang Xu

Abstract Extreme ice-snow melting in winter affects the infiltration process of snow water on the slope surface significantly, and plays an important role in the deformation stability of landslide. The fluctuation trend of slope stability under ice-snow melting is the same as that of soil volume water content. The deterioration effect of mechanical parameters will directly affect the deformation stability of bank slope. Based on this, the ice-snow melting cycle model test of slope soil was designed and carried out. The results are showed.(1) We were established an ice-snow melting model based on physical process. In the process of ice-snow melting, the soil cohesion and internal friction Angle have obvious deterioration effect .The deterioration of cohesion is obviously larger than that of internal friction Angle. In the early part of the ice-snow melting cycle, the deterioration of shear strength parameters is very obvious. Among them, the deterioration of shear strength parameters caused by the first four ice-snow melting cycles accounted for about 70% of the total deterioration. After the G2/T2 ice-snow melting cycle, the degree of phase deterioration gradually decreases. The deterioration trend of shear parameters of soil samples gradually tends to be gentle. (2) In the ice-snow melting cycle, the inside of the soil samples have micro-cracks, fissures repeatedly opened and closed, gradually developed and converged. The result is that the soil samples change from dense state to loose state where internal cracks develop. The internal damage of soil samples is the fundamental reason for the gradual deterioration of shear strength.(3)We are keep to the relative independence principle of creep model and unsaturated seepage equation. We are studied and improved the parameter solving method of creep model. The modified model is reasonable and effective. The creep trend and main characteristics of the unsaturated soil can be described well. Shear strength deterioration effect and slope reliability analysis under extreme ice-snow melting conditions .It has important reference significance to the protection of extreme snow and ice disaster on the bank slope.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 791 ◽  
Author(s):  
Kaipeng Wang ◽  
Fengjiang Wang ◽  
Ying Huang ◽  
Kai Qi

Sn-58Bi eutectic solder is the most recommended low temperature Pb-free solder but is also limited from the interfacial embrittlement of Bi segregation. Since the quaternary Sn-38Bi-1.5Sb-0.7Ag solder provides a similar melting point as Sn-58Bi eutectic, this paper systematically investigated the properties of this solder from wettability, bulk tensile properties, interfacial microstructure in solder joints with a Cu substrate, interfacial evolution in joints during isothermal aging and the shear strength on ball solder joints with effect of aging conditions. The results were also compared with Sn-58Bi solder. The wettability of solder alloys was evaluated with wetting balance testing, and the quaternary Sn-38Bi-1.5Sb-0.7Ag solder had a better wettability than Sn-58Bi solder on the wetting time. Tensile tests on bulk solder alloys indicated that the quaternary Sn-38Bi-1.5Sb-0.7Ag solder had a higher tensile strength and similar elongation compared with Sn-58Bi solder due to the finely distributed SnSb and Ag3Sn intermetallics in the solder matrix. The tensile strength of solder decreased with a decrease in the strain rate and with an increase in temperature, while the elongation of solder was independent of the temperature and strain rate. When soldering with a Cu substrate, a thin Cu6Sn5 intermetallic compound (IMC) is produced at the interface in the solder joint. Measurement on IMC thickness showed that the quaternary Sn-38Bi-1.5Sb-0.7Ag had a lower IMC growth rate during the following isothermal aging. Ball shear test on solder joints illustrated that the quaternary Sn-38Bi-1.5Sb-0.7Ag solder joints had higher shear strength than Sn-58Bi solder joints. Compared with the serious deterioration on shear strength of Sn-58Bi joints from isothermal aging, the quaternary Sn-38Bi-1.5Sb-0.7Ag solder joints presented a superior high temperature stability. Therefore, the quaternary Sn-38Bi-1.5Sb-0.7Ag solder provides better performances and the possibility to replace Sn-58Bi solder to realize low temperature soldering.


1984 ◽  
Vol 30 (106) ◽  
pp. 348-357 ◽  
Author(s):  
W.G. Nickling ◽  
L. Bennett

Abstract The effect of ice content and normal load on the shear strength characteristics of a frozen coarse granular debris was investigated. 31 shear tests were carried out in a modified shearbox allowing a sample temperature of (–1.0 ± 0.2)° C and a load rate of 9.63 × 10−4 cm/min. The tests showed that as the ice content of the frozen debris was increased from 0% (under-saturated) to 25% (saturated), sample shear strength was markedly increased. In contrast, sample shear strength was reduced as ice content was increased from 25% (saturated) to 100% (supersaturated). The changes in shear strength with increasing ice content were attributed directly to changes in internal friction and the cohesive effects of the pore ice. The shear tests also indicate that shear strength increases with increasing normal load up to a critical limit. Above this limit, dilatancy is suppressed causing the shear strength to decrease or remain relatively constant with increased normal load. The stress-strain curves of the 31 tests indicated that samples with higher ice contents tended to reach peak strength (τP) with less displacement during shear. Moreover, the difference between τp and τr (residual strength) was lowest for pure polycrystalline ice and highest for ice-saturated samples. The Mohr-Coulomb failure envelopes displayed very distinctive parabolic curvilinearity. The degree of curvature is thought to be a function of ice creep at low normal loads and particle fracture and crushing at high normal loads.


Sign in / Sign up

Export Citation Format

Share Document