scholarly journals High resolution crystal structures of triosephosphate isomerase complexed with its suicide inhibitors: The conformational flexibility of the catalytic glutamate in its closed, liganded active site

2011 ◽  
Vol 20 (8) ◽  
pp. 1387-1397 ◽  
Author(s):  
Rajaram Venkatesan ◽  
Markus Alahuhta ◽  
Petri M. Pihko ◽  
Rik K. Wierenga
1991 ◽  
Vol 10 (1) ◽  
pp. 50-69 ◽  
Author(s):  
Martin E. M. Noble ◽  
Rik K. Wierenga ◽  
Anne-Marie Lambeir ◽  
Fred R. Opperdoes ◽  
Andy-Mark W. H. Thunnissen ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Nicholas Chim ◽  
Lynnette N Jackson ◽  
Anh M Trinh ◽  
John C Chaput

High resolution crystal structures of DNA polymerase intermediates are needed to study the mechanism of DNA synthesis in cells. Here we report five crystal structures of DNA polymerase I that capture new conformations for the polymerase translocation and nucleotide pre-insertion steps in the DNA synthesis pathway. We suggest that these new structures, along with previously solved structures, highlight the dynamic nature of the finger subdomain in the enzyme active site.


Author(s):  
Shukun Luo ◽  
Ke Xu ◽  
Shaoyun Xiang ◽  
Jie Chen ◽  
Chunyun Chen ◽  
...  

Human indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-dependent enzyme with important roles in many cellular processes and is a potential target for drug discovery against cancer and other diseases. Crystal structures of IDO1 in complex with various inhibitors have been reported. Many of these crystals belong to the same crystal form and most of the reported structures have resolutions in the range 3.2–2.3 Å. Here, three new crystal forms of human IDO1 obtained by introducing a surface mutation, K116A/K117A, distant from the active site are reported. One of these crystal forms diffracted to 1.5 Å resolution and can be readily used for soaking experiments to determine high-resolution structures of IDO1 in complex with the substrate tryptophan or inhibitors that coordinate the heme. In addition, this mutant was used to produce crystals of a complex with an inhibitor that targets the apo form of the enzyme under the same conditions; the structure of this complex was determined at 1.7 Å resolution. Overall, this mutant represents a robust platform for determining the structures of inhibitor and substrate complexes of IDO1 at high resolution.


Author(s):  
Mirja Krause ◽  
Tiila-Riikka Kiema ◽  
Peter Neubauer ◽  
Rik K. Wierenga

The crystal structures are described of two variants of A-TIM: Ma18 (2.7 Å resolution) and Ma21 (1.55 Å resolution). A-TIM is a monomeric loop-deletion variant of triosephosphate isomerase (TIM) which has lost the TIM catalytic properties. Ma18 and Ma21 were identified after extensive directed-evolution selection experiments using anEscherichia coliL-arabinose isomerase knockout strain expressing a randomly mutated A-TIM gene. These variants facilitate better growth of theEscherichia coliselection strain in medium supplemented with 40 mML-arabinose. Ma18 and Ma21 differ from A-TIM by four and one point mutations, respectively. Ma18 and Ma21 are more stable proteins than A-TIM, as judged from CD melting experiments. Like A-TIM, both proteins are monomeric in solution. In the Ma18 crystal structure loop 6 is open and in the Ma21 crystal structure loop 6 is closed, being stabilized by a bound glycolate molecule. The crystal structures show only small differences in the active site compared with A-TIM. In the case of Ma21 it is observed that the point mutation (Q65L) contributes to small structural rearrangements near Asn11 of loop 1, which correlate with different ligand-binding properties such as a loss of citrate binding in the active site. The Ma21 structure also shows that its Leu65 side chain is involved in van der Waals interactions with neighbouring hydrophobic side-chain moieties, correlating with its increased stability. The experimental data suggest that the increased stability and solubility properties of Ma21 and Ma18 compared with A-TIM cause better growth of the selection strain when coexpressing Ma21 and Ma18 instead of A-TIM.


2009 ◽  
Vol 73 (1) ◽  
pp. 62-74 ◽  
Author(s):  
Jieying Liu ◽  
David B. Bolstad ◽  
Adrienne E. Smith ◽  
Nigel D. Priestley ◽  
Dennis L. Wright ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joanna I. Loch ◽  
Barbara Imiolczyk ◽  
Joanna Sliwiak ◽  
Anna Wantuch ◽  
Magdalena Bejger ◽  
...  

AbstractRhizobium etli, a nitrogen-fixing bacterial symbiont of legume plants, encodes an essential l-asparaginase (ReAV) with no sequence homology to known enzymes with this activity. High-resolution crystal structures of ReAV show indeed a structurally distinct, dimeric enzyme, with some resemblance to glutaminases and β-lactamases. However, ReAV has no glutaminase or lactamase activity, and at pH 9 its allosteric asparaginase activity is relatively high, with Km for l-Asn at 4.2 mM and kcat of 438 s−1. The active site of ReAV, deduced from structural comparisons and confirmed by mutagenesis experiments, contains a highly specific Zn2+ binding site without a catalytic role. The extensive active site includes residues with unusual chemical properties. There are two Ser-Lys tandems, all connected through a network of H-bonds to the Zn center, and three tightly bound water molecules near Ser48, which clearly indicate the catalytic nucleophile.


2019 ◽  
Vol 476 (21) ◽  
pp. 3333-3353 ◽  
Author(s):  
Malti Yadav ◽  
Kamalendu Pal ◽  
Udayaditya Sen

Cyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3′3′-cyclic GMP–AMP (cGAMP). To unveil their degradation mechanism, we have determined high-resolution crystal structures of VcEAL with Ca2+, c-di-GMP-Ca2+, 5′-pGpG-Ca2+ and cGAMP-Ca2+, the latter provides the first structural basis of cGAMP hydrolysis. Structural studies reveal a typical triosephosphate isomerase barrel-fold with substrate c-di-GMP/cGAMP bound in an extended conformation. Highly conserved residues specifically bind the guanine base of c-di-GMP/cGAMP in the G2 site while the semi-conserved nature of residues at the G1 site could act as a specificity determinant. Two metal ions, co-ordinated with six stubbornly conserved residues and two non-bridging scissile phosphate oxygens of c-di-GMP/cGAMP, activate a water molecule for an in-line attack on the phosphodiester bond, supporting two-metal ion-based catalytic mechanism. PDE activity and biofilm assays of several prudently designed mutants collectively demonstrate that VcEAL active site is charge and size optimized. Intriguingly, in VcEAL-5′-pGpG-Ca2+ structure, β5–α5 loop adopts a novel conformation that along with conserved E131 creates a new metal-binding site. This novel conformation along with several subtle changes in the active site designate VcEAL-5′-pGpG-Ca2+ structure quite different from other 5′-pGpG bound structures reported earlier.


1999 ◽  
Vol 82 (08) ◽  
pp. 271-276 ◽  
Author(s):  
Glen Spraggon ◽  
Stephen Everse ◽  
Russell Doolittle

IntroductionAfter a long period of anticipation,1 the last two years have witnessed the first high-resolution x-ray structures of fragments from fibrinogen and fibrin.2-7 The results confirmed many aspects of fibrinogen structure and function that had previously been inferred from electron microscopy and biochemistry and revealed some unexpected features. Several matters have remained stubbornly unsettled, however, and much more work remains to be done. Here, we review several of the most significant findings that have accompanied the new x-ray structures and discuss some of the problems of the fibrinogen-fibrin conversion that remain unresolved. * Abbreviations: GPR—Gly-Pro-Arg-derivatives; GPRPam—Gly-Pro-Arg-Pro-amide; GHRPam—Gly-His-Arg-Pro-amide


Sign in / Sign up

Export Citation Format

Share Document