Frequency-independent parameters of an equivalent circuit of two dimensional island gold films

2003 ◽  
Vol 199 (3) ◽  
pp. 475-483 ◽  
Author(s):  
A. G. Bishay ◽  
W. Fikry ◽  
H. Hunter ◽  
H. F. Ragai
2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Peng Zhao ◽  
Yihang Zhang ◽  
Rongrong Sun ◽  
Wen-Sheng Zhao ◽  
Yue Hu ◽  
...  

A compact frequency selective surface (FSS) for 5G applications has been designed based on 2.5-dimensional Jerusalem cross. The proposed element consists of two main parts: the successive segments of the metal traces placed alternately on the two surfaces of the substrate and the vertical vias connecting traces. Compared with previous published two-dimensional miniaturized elements, the transmission curves indicate a significant size reduction (1/26 wavelengths at the resonant frequency) and exhibit good angular and polarization stabilities. Furthermore, a general equivalent circuit model is established to provide direct physical insight into the operating principle of this FSS. A prototype of the proposed FSS has been fabricated and measured, and the results validate this design.


2021 ◽  
Author(s):  
Jie Luo ◽  
Chunchao Wen ◽  
Zhihong Zhu ◽  
Jianfa Zhang
Keyword(s):  

2021 ◽  
Vol 31 (10) ◽  
pp. 2150160
Author(s):  
G. Tigan ◽  
O. Brandibur ◽  
E. A. Kokovics ◽  
L. F. Vesa

Generic results for degenerate Chenciner (generalized Neimark–Sacker) bifurcation are obtained in the present work. The bifurcation arises from two-dimensional discrete-time systems with two independent parameters. We define in this work a new transformation of parameters, which enables the study of the bifurcation when degeneracy occurs. By the four bifurcation diagrams we obtained, new behaviors hidden by the degeneracy are brought to light.


2017 ◽  
Vol 5 (5) ◽  
pp. 694-711 ◽  
Author(s):  
Matteo Cinelli ◽  
Giovanna Ferraro ◽  
Antonio Iovanella

AbstractThe dyadic effect is a phenomenon that occurs when the number of links between nodes sharing a common feature is larger than expected if the features are distributed randomly on the network. In this article, we consider the case when nodes are distinguished by a binary characteristic. Under these circumstances, two independent parameters, namely dyadicity and heterophilicity are able to detect the presence of the dyadic effect and to measure how much the considered characteristic affects the network topology. The distribution of nodes characteristics can be investigated within a two-dimensional space that represents the feasible region of the dyadic effect, which is bound by two upper bounds on dyadicity and heterophilicity. Using some network structural arguments, we are able to improve such upper bounds and introduce two new lower bounds, providing a reduction of the feasible region of the dyadic effect as well as constraining dyadicity and heterophilicity within a specific range. Some computational experiences show the bounds effectiveness and their usefulness with regards to different classes of networks.


Sign in / Sign up

Export Citation Format

Share Document