Study of electrical transport properties of ZnO thin films used as front contact of solar cells

2005 ◽  
Vol 242 (9) ◽  
pp. 1915-1919 ◽  
Author(s):  
C. Calderón ◽  
G. Gordillo ◽  
J. Olarte
2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Camilo A. Otalora ◽  
Andres F. Loaiza ◽  
Gerardo Gordillo

Impedance spectroscopy (IS) is used for studying the electrical transport properties of thin films used in organic solar cells with structure ITO/HTL/active layer/cathode, where PEDOT:PSS (poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid) and CuPC (tetrasulfonated copper-phthalocyanine) were investigated as HTL (hole transport layer) and P3HT:PCBM (poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester) blends prepared from mesitylene and chlorobenzene based solutions were studied as active layer and Ag and Al were used as cathode. The study allowed determining the influence of the type of solvent used for the preparation of the active layer as well as the speed at which the solvents are removed on the carriers mobility. The effect of exposing the layer of P3HT to the air on its mobility was also studied. It was established that samples of P3HT and P3HT:PCBM prepared using mesitylene as a solvent have mobility values significantly higher than those prepared from chlorobenzene which is the solvent most frequently used. It was also determined that the mobility of carriers in P3HT films strongly decreases when this sample is exposed to air. In addition, it was found that the electrical properties of P3HT:PCBM thin films can be improved by removing the solvent slowly which is achieved by increasing the pressure inside the system of spin-coating during the film growth.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
A. Jantayod ◽  
D. Doonyapisut ◽  
T. Eknapakul ◽  
M. F. Smith ◽  
W. Meevasana

Abstract The electrical transport properties of a thin film of the diamondoid adamantane, deposited on an Au/W substrate, were investigated experimentally. The current I, in applied potential V, from the admantane-thiol/metal heterstructure to a wire lead on its surface exhibited non-symmetric (diode-like) characteristics and a signature of resistive switching (RS), an effect that is valuable to non-volatile memory applications. I(V) follows a hysteresis curve that passes twice through $$I(0)=0$$ I ( 0 ) = 0 linearly, indicating RS between two states with significantly different conductances, possibly due to an exotic mechanism.


2021 ◽  
pp. 100113
Author(s):  
Jyoti Yadav ◽  
Rini Singh ◽  
M.D. Anoop ◽  
Nisha Yadav ◽  
N. Srinivasa Rao ◽  
...  

2016 ◽  
Vol 55 (4S) ◽  
pp. 04EJ08
Author(s):  
Akihiro Tsuruta ◽  
Yusuke Tsujioka ◽  
Yutaka Yoshida ◽  
Ichiro Terasaki ◽  
Norimitsu Murayama ◽  
...  

2019 ◽  
Vol 256 (5) ◽  
pp. 1800735 ◽  
Author(s):  
Qiu Lin Li ◽  
Xing Hua Zhang ◽  
Wen Jie Wang ◽  
Zhi Qing Li ◽  
Ding Bang Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document