scholarly journals Study of Electrical Transport Properties of Thin Films Used as HTL and as Active Layer in Organic Solar Cells, through Impedance Spectroscopy Measurements

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Camilo A. Otalora ◽  
Andres F. Loaiza ◽  
Gerardo Gordillo

Impedance spectroscopy (IS) is used for studying the electrical transport properties of thin films used in organic solar cells with structure ITO/HTL/active layer/cathode, where PEDOT:PSS (poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid) and CuPC (tetrasulfonated copper-phthalocyanine) were investigated as HTL (hole transport layer) and P3HT:PCBM (poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester) blends prepared from mesitylene and chlorobenzene based solutions were studied as active layer and Ag and Al were used as cathode. The study allowed determining the influence of the type of solvent used for the preparation of the active layer as well as the speed at which the solvents are removed on the carriers mobility. The effect of exposing the layer of P3HT to the air on its mobility was also studied. It was established that samples of P3HT and P3HT:PCBM prepared using mesitylene as a solvent have mobility values significantly higher than those prepared from chlorobenzene which is the solvent most frequently used. It was also determined that the mobility of carriers in P3HT films strongly decreases when this sample is exposed to air. In addition, it was found that the electrical properties of P3HT:PCBM thin films can be improved by removing the solvent slowly which is achieved by increasing the pressure inside the system of spin-coating during the film growth.

2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Cheng-Chiang Chen ◽  
Lung-Chien Chen

This work presents a flexible organic solar cell with a structure for ITO/PEDOT:PSS/P3HT:PCBM+ruthenium complex sensitizer and Au nanoparticles on a flexible substrate. The process and thickness of the PEDOT:PSS hole transport layer and P3HT:PCBM active layer were optimized. A ruthenium complex sensitizer and Au nanoparticles were then introduced into the P3HT:PCBM active layer to improve the performance of solar cells. For the ITO/PEDOT:PSS/P3HT:PCBM+ruthenium complex sensitizer and Au nanoparticles structure on a flexible polyimide (PI) substrate under 0.1 and 1 sun conditions, the measured short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and efficiency (η) are 3.89 and 9.67 mA/cm2, 0.45 and 0.45 V, 0.266 and 0.232, and 4.65 and 1.01%, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6890
Author(s):  
Georgy Grancharov ◽  
Mariya-Desislava Atanasova ◽  
Radostina Kalinova ◽  
Rositsa Gergova ◽  
Georgi Popkirov ◽  
...  

In this study, some crucial parameters were determined of flexible polymer–organic solar cells prepared from an active layer blend of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) mixed in 1:1 mass ratio and deposited from chlorobenzene solution by spin-coating on poly(ethylene terephthalate) (PET)/ITO substrates. Additionally, the positive effect of an electron transport layer (ETL) prepared from zinc oxide nanoparticles (ZnO np) on flexible photovoltaic elements’ performance and stability was investigated. Test devices with above normal architecture and silver back electrodes deposed by magnetron sputtering were constructed under environmental conditions. They were characterized by current-voltage (I–V) measurements, quantum efficiency, impedance spectroscopy, surface morphology, and time–degradation experiments. The control over morphology of active layer thin film was achieved by post-deposition thermal treatment at temperatures of 110–120 °C, which led to optimization of device morphology and electrical parameters. The impedance spectroscopy results of flexible photovoltaic elements were fitted using two R||CPE circuits in series. Polymer–organic solar cells prepared on plastic substrates showed comparable current–voltage characteristics and structural properties but need further device stability improvement according to traditionally constructed cells on glass substrates.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2109
Author(s):  
Lorenzo Bottiglieri ◽  
Ali Nourdine ◽  
Joao Resende ◽  
Jean-Luc Deschanvres ◽  
Carmen Jiménez

The performance and stability in atmospheric conditions of organic photovoltaic devices can be improved by the integration of stable and efficient photoactive materials as substituent of the chemically unstable poly (3,4-ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS), generally used as organic hole transport layer. Promising candidates are p-type transparent conductive oxides, which combine good optoelectronic and a higher mechanical and chemical stability than the organic counterpart. In this work, we synthesize Cu-rich CuCrO2 thin films by aerosol-assisted chemical vapour deposition as an efficient alternative to PEDOT:PSS. The effect of stoichiometry on the structural, electrical, and optical properties was analysed to find a good compromise between transparency, resistivity, and energy bands alignment, to maximize the photovoltaic performances., Average transmittance and bandgap are reduced when increasing the Cu content in these out of stoichiometry CuCrO2 films. The lowest electrical resistivity is found for samples synthesized from a solution composition in the 60–70% range. The optimal starting solution composition was found at 65% of Cu cationic ratio corresponding to a singular point in Hackee’s figure of merit of 1 × 10−7 Ω−1. PBDD4T-2F:PC70BM organic solar cells were fabricated by integrating CuCrO2 films grown from a solution composition ranging between 40% to 100% of Cu as hole transport layers. The solar cells integrating a film grown with a Cu solution composition of 65% achieved a power conversion efficiency as high as 3.1%, representing the best trade-off of the optoelectronic properties among the studied candidates. Additionally, despite the efficiencies achieved from CuCrO2-based organic solar cells are still inferior to the PEDOT:PSS counterpart, we demonstrated a significant enhancement of the lifetime in atmospheric conditions of optimal oxides-based organic photovoltaic devices.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Nguyen Nang Dinh ◽  
Do Ngoc Chung ◽  
Tran Thi Thao ◽  
David Hui

Polymeric nanocomposite films from PEDOT and MEH-PPV embedded with surface modified TiO2nanoparticles for the hole transport layer and emission layer were prepared, respectively, for organic emitting diodes (OLEDs). The composite of MEH-PPV+nc-TiO2was used for organic solar cells (OSCs). The characterization of these nanocomposites and devices showed that electrical (I-Vcharacteristics) and spectroscopic (photoluminescent) properties of conjugate polymers were enhanced by the incorporation of nc-TiO2in the polymers. The organic light emitting diodes made from the nanocomposite films would exhibit a larger photonic efficiency and a longer lasting life. For the organic solar cells made from MEH-PPV+nc-TiO2composite, a fill factor reached a value of about 0.34. Under illumination by light with a power density of 50 mW/cm2, the photoelectrical conversion efficiency was about 0.15% corresponding to an open circuit voltageVoc= 0.126 V and a shortcut circuit current densityJsc= 1.18 mA/cm2.


Sign in / Sign up

Export Citation Format

Share Document