Evaluation of AlGaN-based deep ultraviolet emitter active regions by temperature dependent time-resolved photoluminescence

2010 ◽  
Vol 7 (10) ◽  
pp. 2390-2393 ◽  
Author(s):  
G. A. Garrett ◽  
A. V. Sampath ◽  
H. Shen ◽  
M. Wraback ◽  
W. Sun ◽  
...  
RSC Advances ◽  
2020 ◽  
Vol 10 (72) ◽  
pp. 44373-44381
Author(s):  
Xiaozhe Wang ◽  
Qi Wang ◽  
Zhijun Chai ◽  
Wenzhi Wu

The thermal properties of FAPbBr3 perovskite nanocrystals (PNCs) is investigated by use of temperature-dependent steady-state/time-resolved photoluminescence and first-principle calculations.


2007 ◽  
Vol 17 (01) ◽  
pp. 179-188 ◽  
Author(s):  
MICHAEL WRABACK ◽  
GREGORY A. GARRETT ◽  
ANAND V. SAMPATH ◽  
PAUL H. SHEN

Time-resolved photoluminescence studies of nitride semiconductors and ultraviolet light emitters comprised of these materials are performed as a function of pump intensity as a means of understanding and evaluating device performance. Comparison of time-resolved photoluminescence (TRPL) on UV LED wafers prior to fabrication with subsequent device testing indicate that the best performance is attained from active regions that exhibit both reduced nonradiative recombination due to saturation of traps associated with point and extended defects and concomitant lowering of radiative lifetime with increasing carrier density. Similar behavior is observed in optically pumped UV lasers. Temperature and intensity dependent TRPL measurements on a new material, AlGaN containing nanoscale compositional inhomogeneities (NCI), show that it inherently combines inhibition of nonradiative recombination with reduction of radiative lifetime, providing a potentially higher efficiency UV emitter active region.


2016 ◽  
Vol 70 (12) ◽  
pp. 1974-1980 ◽  
Author(s):  
Justin M. Reynard ◽  
Nathan S. Van Gorder ◽  
Caley A. Richardson ◽  
Richie D. Eriacho ◽  
Frank V. Bright

We report new instrumentation for rapidly and reliably measuring the temperature-dependent photoluminescence response from porous silicon as a function of analyte vapor concentration. The new system maintains the porous silicon under inert conditions and it allows on-the-fly steady-state and time-resolved photoluminescence intensity and hyper-spectral measurements between 293 K and 450 K. The new system yields reliable data at least 100-fold faster in comparison to previous instrument platforms.


Author(s):  
Pham Thi Thuy ◽  
Bui Xuan Vuong

This paper reports on the photoluminescence of porous GaPprepared by electrochemical anodization of (111)-oriented bulk material.Porous and bulk GaP exhibits green and red photoluminescence, respectively when excited by the 355-nm laser. The photoluminescence intensity of porous GaP is much stronger than that of the bulk sample. Temperature-dependent time-resolved photoluminescence shows that the green emission gradually decreases when the temperature increases and the photoluminescence full width at haft maximum (FWHM) slightly narrow with decreasing temperature. These results assigned to the contribution of lattice vibrations. Raman scattering measurement is carried out to confirm the size decreasing of the porous GaP material. Keywords PorousGaP, photoluminescence, time-resolved photoluminescence, electrochemical etching References 1. L. T. Canham, Appl. Phys.Lett. 57, 1046 (1990).2. K. Grigoras, Jpn. J. Appl. Phys. 39, 378 (2000)3. H. Koyama, J. Appl. Electrochem. 36, 999 (2006)4. H. A. Hadi, International Letters of Chemistry, Physics and Astronomy, 17(2), 142-152 (2014).5. S. Setzu, P. Ferrand, and R. Romestain, Mater.Sci. Eng, 34, 69-70 (2000).6. S. E. Letant and M. J. Sailor, Adv. Mater, 355, 12 (2000).7. M. T. Kelly, J. K. M. Chun, and A. B. Bocarsly, Nature, 382, 214 (1996).8. G. Di Francia, V. La Ferrara, L. Quercia, and G. Faglia, J. Porous Mater, 7, 287 (2000).9. J. Drott, K. Lindstrom, L. Rosengren, and T. Laurell, J. Micromech. Microeng, 7, 14 (1997).10. B. P. Azeredo, Y. W. Lin, A. Avagyan, M. Sivaguru, K. Hsu, P. Ferreira, Advanced Functional Materials, 26, 2929-2939 (2016).11. A. Anedda, A. Serpi, V. A. Karavanskii, I. M. Tiginyanu, and V. M. Ichizli, Appl. Phys.Lett, 67, 3316 (1995).12. A. I. Belogorokhov, V. A. Karavanskii, A. N. Obraztsov and V. Yu. Timoshenko, JETP Lett. 60, 274 (1994).13. K. Tomioka, S. Adachi, J. App. Phys, 98, 073511 (2005).14. M. A. Stevens-Kalceff, I. M. Tiginyanu, S. Langa, H. Foll and H. L. Hartnagel, J. App. Phys, 89,2560 (2001).15. A. V. Zoteev, P. K. Kashkarov, A. N. Obraztsov and V. Y. Timoshenko, Semiconductors, 30, 775 (1996).16. A. A. Lebedev, V. Y. Rud and Y. V. Rud, Tech. Phys. Lett, 22, 754 (1996).17. H. Richter, Z. P. Wang, and L. Ley, Solid State Commum, 39, 625 (1981).18. L. H. Campbell and P. M.Fauchet, Solid State Commum, 58, 739 (1986).19. V. V. Ursaki, N. N. Syrbu, S. Albu, V. V. Zalamai, I. M. Tiginyanu, and R. W. Boyd, Semicond. Sci. Technl, 20, 745- 748 (2005)20. R. W. Tjerkstra, Electrochemical and Solid-State Letters,9 (5), C81-C84 (2006)


Sign in / Sign up

Export Citation Format

Share Document