Effects of the V/III ratio on the quality of aluminum nitride grown on (0001) sapphire by high temperature hydride vapor phase epitaxy

2013 ◽  
Vol 10 (3) ◽  
pp. 362-365 ◽  
Author(s):  
N. Coudurier ◽  
R. Boichot ◽  
V. Fellmann ◽  
A. Claudel ◽  
E. Blanquet ◽  
...  
2007 ◽  
Vol 1040 ◽  
Author(s):  
L. E. Rodak ◽  
Sridhar Kuchibhatla ◽  
P. Famouri ◽  
Ting Liu ◽  
D. Korakakis

AbstractAluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nano-electromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro- channels for fuel cell applications, and micromechanical resonators.This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.


2007 ◽  
Vol 90 (12) ◽  
pp. 122116 ◽  
Author(s):  
Derrick S. Kamber ◽  
Yuan Wu ◽  
Edward Letts ◽  
Steven P. DenBaars ◽  
James S. Speck ◽  
...  

2015 ◽  
Vol 66 (6) ◽  
pp. 994-1000
Author(s):  
Ju-Hyung Ha ◽  
Juan Wang ◽  
Won-Jae Lee ◽  
Young-Jun Choi ◽  
Hae-Yong Lee ◽  
...  

2011 ◽  
Vol 8 (5) ◽  
pp. 1463-1466 ◽  
Author(s):  
Benjamin N. Bryant ◽  
Derrick S. Kamber ◽  
Feng Wu ◽  
Shuji Nakamura ◽  
James S. Speck

2015 ◽  
Vol 60 (6) ◽  
pp. 889-894
Author(s):  
I. A. Belogorohov ◽  
A. A. Donskov ◽  
S. N. Knyazev ◽  
Yu. P. Kozlova ◽  
V. F. Pavlov ◽  
...  

2009 ◽  
Vol 404 (23-24) ◽  
pp. 4919-4921
Author(s):  
Anatolij Govorkov ◽  
Alexsandr Donskov ◽  
Lev Diakonov ◽  
Yulia Kozlova ◽  
Sergej Malahov ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 141 ◽  
Author(s):  
Haixiao Hu ◽  
Baoguo Zhang ◽  
Lei Liu ◽  
Deqin Xu ◽  
Yongliang Shao ◽  
...  

The progress of nitride technology is widely limited and hindered by the lack of high-quality gallium nitride (GaN) wafers. Therefore, a large number of GaN epitaxial devices are grown on heterogeneous substrates. Although various additional treatments of substrate have been used to promote crystal quality, there is still plenty of room for its improvement, in terms of direct and continuous growth based on the hydride vapor phase epitaxy (HVPE) technique. Here, we report a three-step process that can be used to enhance the quality of GaN crystal by tuning V/III rate during successive HVPE process. In the growth, a metal-organic chemical vapor deposition (MOCVD) grown GaN on sapphire (MOCVD-GaN/Al2O3) was employed as substrate, and a high-quality GaN polyporous interlayer, with successful acquisition, without any additional substrate treatment, caused the growth stress to decrease to 0.06 GPa. Meanwhile the quality of GaN improved, and the freestanding GaN was directly obtained during the growth process.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1100
Author(s):  
Sepideh Faraji ◽  
Elke Meissner ◽  
Roland Weingärtner ◽  
Sven Besendörfer ◽  
Jochen Friedrich

GaN layers on sapphire substrates were prepared by using metal organic vapor phase epitaxy (MOVPE) combined with an in-situ H2 etching process for the purpose of later self-separation of thick GaN crystals produced by hydride vapor phase epitaxy (HVPE) on such substrates. The etching process results in deep pits and long voids that formed on the surface and along the lower interface between GaN and sapphire, respectively. The pits, which were investigated by SEM analysis, can be modified in their aspect ratio and density by controlling the etching parameters. Using a proper set of in-situ etching parameters, a seed layer with internal voids can be prepared, which is suitable for HVPE overgrowth and the self-separation process. The quality of the in-situ-etched seed GaN layer and overgrown GaN crystal were characterized by X-ray diffraction (XRD) and defect selective etching (DSE). With the aid of atomic force microscopy (AFM) in tapping mode, the interface morphology of the separated GaN crystal was analyzed. The crystal quality of the separated HVPE-GaN crystal is comparable to the crystal grown on untreated GaN MOVPE-seed, which did not separate from the sapphire substrate. The introduced technique to promote the crystal separation during the HVPE process has no obvious drawback on the quality of the grown GaN crystals. Using this technique, the self-separation occurs more gently due to a weakened interface between GaN/sapphire. The conventional separation from an untreated seed by pure thermomechanical action results in higher mechanical forces on the crystal and consequently much higher risk of crystal breakage.


Sign in / Sign up

Export Citation Format

Share Document