Coriolus versicolor alleviates diabetic cardiomyopathy by inhibiting cardiac fibrosis and NLRP3 inflammasome activation

2019 ◽  
Vol 33 (10) ◽  
pp. 2737-2748 ◽  
Author(s):  
Yueqiu Wang ◽  
Hui Li ◽  
Yang Li ◽  
Yihan Zhao ◽  
Fangfei Xiong ◽  
...  
2021 ◽  
Vol 22 (24) ◽  
pp. 13228
Author(s):  
Yi Sun ◽  
Shuzhe Ding

Diabetic cardiomyopathy (DCM), as a common complication of diabetes, is characterized by chronic low-grade inflammation. The NLRP3 inflammasome is a key sensor mediating innate immune and inflammatory responses. However, the mechanisms initiating and promoting NLRP3 inflammasome activation in DCM is largely unexplored. The aim of the present review is to describe the link between NLRP3 inflammasome and DCM, and to provide evidence highlighting the importance of exercise training in DCM intervention. Collectively, this evidence suggests that DCM is an inflammatory disease aggravated by NLRP3 inflammasome-mediated release of IL-1β and IL-18. In addition, chronic exercise intervention is an effective preventive and therapeutic method to alleviate DCM via modulating the NLRP3 inflammasome.


2020 ◽  
Vol 34 (5) ◽  
pp. 629-640
Author(s):  
Xueling Li ◽  
Qin Zhu ◽  
Qingcheng Wang ◽  
Qinggang Zhang ◽  
Yaru Zheng ◽  
...  

Abstract Background/aims The persistent existence of pathological cardiac remodeling, resulting from aortic stenosis, is related to poor clinical prognosis after successful transcatheter aortic valve replacement (TAVR). Sacubitril/valsartan (Sac/Val), comprising an angiotensin receptor blocker and a neprilysin inhibitor, has been demonstrated to have a beneficial effect against pathological cardiac remodeling, including cardiac fibrosis and inflammation in heart failure. The aim of this study was to determine whether Sac/Val exerts a cardioprotective effect after pressure unloading in mice. Methods and results Male C57BL/6 J mice were subjected to debanding (DB) surgery after 8 weeks (wk) of aortic banding (AB). Cardiac function was assessed by echocardiography, which indicated a protective effect of Sac/Val after DB. After treatment with Sac/Val post DB, decreased heart weight and myocardial cell size were observed in mouse hearts. In addition, histological analysis, immunofluorescence, and western blot results showed that Sac/Val attenuated cardiac fibrosis and inflammation after DB. Finally, our data indicated that Sac/Val treatment could significantly suppress NF-κB signaling and NLRP3 inflammasome activation in mice after relief of pressure overload. Conclusion Sac/Val exerted its beneficial effects to prevent maladaptive cardiac fibrosis and dysfunction in mice following pressure unloading, which was at least partly due to the inhibition of NLRP3 inflammasome activation.


Cell Cycle ◽  
2020 ◽  
Vol 19 (22) ◽  
pp. 3054-3065
Author(s):  
Yingying Xu ◽  
Haiyang Fang ◽  
Qin Xu ◽  
Congcong Xu ◽  
Lu Yang ◽  
...  

2021 ◽  
Author(s):  
Lin-Shuang Zhang ◽  
Jin-Sheng Zhang ◽  
Yue-Long Hou ◽  
Wei-Wei Lu ◽  
Xian-Qiang Ni ◽  
...  

Abstract Intermedin (IMD), a paracrine/autocrine peptide, protects against cardiac fibrosis. However, the underlying mechanism remains poorly understood. Previous study reports that activation of Nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome contributed to cardiac fibrosis. In this study, we aimed to investigate whether IMD mitigates cardiac fibrosis by inhibiting NLRP3. Cardiac fibrosis was induced by angiotensin II (Ang II) infusion for 2 weeks in rats. Western blot, real-time PCR, histological staining, immunofluorescence assay, RNA sequencing, echocardiography and hemodynamics were used to detect the role and the mechanism of IMD in cardiac fibrosis. Ang II infusion resulted in rat cardiac fibrosis, shown as over-deposition of myocardial interstitial collagen and cardiac dysfunction. Importantly, NLRP3 activation and endoplasmic reticulum stress (ERS) was found in Ang II treated rat myocardium. Ang II infusion decreased the expression of IMD and increased the expression of the receptor system of IMD in the fibrotic rat myocardium. IMD treatment attenuated the cardiac fibrosis and improved cardiac function. In addition, IMD inhibited the upregulation of NLRP3 markers and ERS markers induced by Ang II. In vitro, IMD knockdown by small interfering RNA significantly promoted the Ang II-induced cardiac fibroblast and NLRP3 activation. Moreover, silencing of inositol requiring enzyme 1 α (IRE1α) blocked the effects of IMD inhibiting fibroblast and NLRP3 activation. Pre-incubation with PKA pathway inhibitor H89 blocked the effects of IMD on the anti-ERS, anti-NLRP3 and anti-fibrotic response. In conclusion, IMD alleviates cardiac fibrosis by inhibiting NLRP3 inflammasome activation via suppressing IRE1α and cAMP/PKA pathway.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 368
Author(s):  
Xuechun Sun ◽  
Xiaodan Sun ◽  
Huali Meng ◽  
Junduo Wu ◽  
Xin Guo ◽  
...  

Diabetic cardiomyopathy (DCM) is a common complication of diabetes mellitus (DM), resulting in high mortality. Myocardial fibrosis, cardiomyocyte apoptosis and inflammatory cell infiltration are hallmarks of DCM, leading to cardiac dysfunction. To date, few effective approaches have been developed for the intervention of DCM. In the present study, we investigate the effect of krill oil (KO) on the prevention of DCM using a mouse model of DM induced by streptozotocin and a high-fat diet. The diabetic mice developed pathological features, including cardiac fibrosis, apoptosis and inflammatory cell infiltration, the effects of which were remarkably prevented by KO. Mechanistically, KO reversed the DM-induced cardiac expression of profibrotic and proinflammatory genes and attenuated DM-enhanced cardiac oxidative stress. Notably, KO exhibited a potent inhibitory effect on NLR family pyrin domain containing 3 (NLRP3) inflammasome that plays an important role in DCM. Further investigation showed that KO significantly upregulated the expression of Sirtuin 3 (SIRT3) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), which are negative regulators of NLRP3. The present study reports for the first time the preventive effect of KO on the pathological injuries of DCM, providing SIRT3, PGC-1α and NLRP3 as molecular targets of KO. This work suggests that KO supplementation may be a viable approach in clinical prevention of DCM.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yu Chen ◽  
Meiying Zeng ◽  
Yang Zhang ◽  
Hui Guo ◽  
Wei Ding ◽  
...  

Inflammation has been considered a key component in the pathogenesis and progression of angiotensin II- (Ang II-) induced cardiac hypertrophy and related cardiomyopathy. As a vital mediator of inflammation, the role of the Nlrp3 inflammasome in Ang II-induced cardiomyopathy remains unclear. This study was aimed to determine whether Nlrp3 inflammasome activation and its downstream pathway were involved in Ang II-induced cardiomyopathy. We established an Ang II infusion model in both wild-type and Nlrp3-/- mice to determine the contribution of Nlrp3 to cardiac function. Cardiac fibrosis was determined by Masson’s trichrome staining, real-time PCR, and TUNEL assay; cardiac function was assessed by echocardiography. Nlrp3 inflammasome activation and related downstream cytokines were measured by Western blotting and enzyme-linked immunosorbent assays; mitochondrial dysfunction was examined by transmission electron microscopy and real-time PCR. We found that Ang II-infused mice showed impaired cardiac function, as evidenced by increased cardiac fibrosis, apoptosis, inflammation, and left ventricular dysfunction. However, these alterations were significantly alleviated in the mice with Nlrp3 gene deletion. Moreover, Ang II-infused mice showed increased Nlrp3 inflammasome activity relative to that of the cytokines IL-1β and IL-18, increased reactive oxygen species, mitochondrial abnormalities, and decreased mtDNA copy number and ATP synthase activity. These molecular and pathological alterations were also attenuated in Nlrp3 deficient mice. In conclusion, Nlrp3 inflammasome-induced mitochondrial dysfunction is involved in Ang II-induced cardiomyopathy. Nlrp3 gene deletion attenuated mitochondrial abnormalities, cardiac inflammation, oxidative stress, and fibrosis and thus alleviated heart dysfunction and hypertrophy. Targeting the Nlrp3 inflammasome and/or mitochondria may be a therapeutic approach for Ang II-induced cardiac diseases.


Sign in / Sign up

Export Citation Format

Share Document