Pressure drag and momentum fluxes due to the Alps. I: Comparison between numerical simulations and observations

1991 ◽  
Vol 117 (499) ◽  
pp. 495-525 ◽  
Author(s):  
Klaus P. Hoinka ◽  
Terry L. Clark
2005 ◽  
Vol 62 (9) ◽  
pp. 3213-3231 ◽  
Author(s):  
Chih-Chieh Chen ◽  
Dale R. Durran ◽  
Gregory J. Hakim

Abstract The evolution of mountain-wave-induced momentum flux is examined through idealized numerical simulations during the passage of a time-evolving synoptic-scale flow over an isolated 3D mountain of height h. The dynamically consistent synoptic-scale flow U accelerates and decelerates with a period of 50 h; the maximum wind arrives over the mountain at 25 h. The synoptic-scale static stability N is constant, so the time dependence of the nonlinearity parameter, ɛ(t) = Nh/U(t), is symmetric about a minimum value at 25 h. The evolution of the vertical profile of momentum flux shows substantial asymmetry about the midpoint of the cycle even though the nonlinearity parameter is symmetric. Larger downward momentum fluxes are found during the accelerating phase, and the largest momentum fluxes occur in the mid- and upper troposphere before the maximum background flow arrives at the mountain. For a period of roughly 15 h, this vertical distribution of momentum flux accelerates the lower-tropospheric zonal-mean winds due to low-level momentum flux convergence. Conservation of wave action and Wentzel–Kramers–Brillouin (WKB) ray tracing are used to reconstruct the time–altitude dependence of the mountain-wave momentum flux in a semianalytic procedure that is completely independent of the full numerical simulations. For quasi-linear cases, the reconstructions show good agreement with the numerical simulations, implying that the basic asymmetry obtained in the full numerical simulations may be interpreted using WKB theory. These results demonstrate that even slow variations in the mean flow, with a time scale of 2 days, play a dominant role in regulating the vertical profile of mountain-wave-induced momentum flux. The time evolution of cross-mountain pressure drag is also examined in this study. For almost-linear cases, the pressure drag is well predicted under steady-state linear theory by using the instantaneous incident flow. Nevertheless, for mountains high enough to preserve a moderate degree of nonlinearity when the synoptic-scale incident flow is strongest, the evolution of cross-mountain pressure drag is no longer symmetric about the time of maximum wind. A higher drag state is found when the cross-mountain flow is accelerating. These results suggest that the local character of the topographically induced disturbance cannot be solely determined by the instantaneous value of the nonlinearity parameter ɛ.


Author(s):  
Pedro Forte ◽  
Jorge E. Morais ◽  
Tiago M. Barbosa ◽  
Daniel A. Marinho

The aim of this study was to compare the aerodynamics of able-bodied and amputee cyclists by computational fluid dynamics. The cyclists’ geometry was obtained by a 3D scanner. Three CAD models were created as able-bodied, transtibial (Tt), and transradial (Tr) amputees. Numerical simulations were conducted up to 13 m/s with increments of 1 m/s to assess drag force. The drag ranged between 0.36 and 39.25 N for the able-bodied model, 0.36–43.78 for the Tr model and 0.37–41.39 N for the Tt model. The pressure drag ranged between 0.20 and 22.94 N for the normal model, 0.21–28.61 for the Tr model and 0.23–28.02 N for the Tt model. The viscous drag ranged between 0.16 and 15.31 N for the normal model, 0.15–15.17 for the Tr model and 0.14–13.38 N for the Tt model. The rolling resistance (RR) was higher on the able-bodied (2.23 N), followed by the Tr (2.20 N) and Tt (2.17 N) models. As a conclusion, the able-bodied cyclist showed less drag, followed by the Tt and Tr models, respectively. The RR presented higher values in the able-bodied, followed by the Tr and Tt models.


2006 ◽  
Vol 134 (11) ◽  
pp. 3336-3354 ◽  
Author(s):  
Allison M. Hoggarth ◽  
Heather Dawn Reeves ◽  
Yuh-Lang Lin

Abstract During intensive observation period 8 (IOP-8) of the Mesoscale Alpine Program, a strong stable layer formed over Italy’s Po Valley and the northern Ligurian Sea. This stable layer has been shown in previous research to be important for the formation of convection over the Ligurian Sea and the lack thereof over the Po Valley and southern slopes of the Alps. The purpose of this study is to investigate the mechanisms that acted to form and maintain the stable layer during IOP-8. This aim is accomplished through inspection of observed data as well as numerical simulations and sensitivity experiments. Observations and reanalysis data show that starting on 17 October 1999, a relatively cool, stable air mass was advected around the eastern side of the Alps into the lower atmosphere of the Po Valley. Both observational data and model output show this air mass as being blocked as it encountered the western Alps, thus resulting in an accumulation of cool, stable air at low levels in the Po Valley during the ensuing 60 h. When southerly flow approached northern Italy beginning on 20 October 1999, both the western Alps and the northern Alps appeared to help retain the low-level, cool, stable air over the Po Valley. A trajectory and sounding analysis shows that warmer, less stable air originating from over the southern Mediterranean Sea was advected atop the low-lying stable layer within the Po Valley. It is hypothesized that this differential advection, as well as blocking by the western and northern flanks of the Alps, were responsible for the longevity of the stable layer. A series of numerical simulations and sensitivity experiments were performed to test the above hypotheses. These tests support the hypotheses. Other mechanisms were also considered, including blocking of solar radiation by clouds, friction, and evaporative cooling. These simulations revealed that all three processes were critical for the longevity of the stable layer and point to the importance of accurate model representation of subgrid-scale processes.


2005 ◽  
Vol 133 (11) ◽  
pp. 3095-3109 ◽  
Author(s):  
M. Weissmann ◽  
F. J. Braun ◽  
L. Gantner ◽  
G. J. Mayr ◽  
S. Rahm ◽  
...  

Abstract On summer days radiative heating of the Alps produces rising air above the mountains and a resulting inflow of air from the foreland. This leads to a horizontal transport of air from the foreland to the Alps, and a vertical transport from the boundary layer into the free troposphere above the mountains. The structure and the transports of this mountain–plain circulation in southern Germany (“Alpine pumping”) were investigated using an airborne 2-μm scanning Doppler lidar, a wind-temperature radar, dropsondes, rawinsondes, and numerical models. The measurements were part of the Vertical Transport and Orography (VERTIKATOR) campaign in summer 2002. Comparisons of dropsonde and lidar data proved that the lidar is capable of measuring the wind direction and wind speed of this weak flow toward the Alps (1–4 m s−1). The flow was up to 1500 m deep, and it extended ∼80 km into the Alpine foreland. Lidar data are volume measurements (horizontal resolution ∼5 km, vertical resolution 100 m). Therefore, they are ideal for the investigation of the flow structure and the comparison to numerical models. Even the vertical velocities measured by the lidar agreed with the mass budget calculations in terms of both sign and magnitude. The numerical simulations with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) (mesh size 2 and 6 km) and the Local Model (LM) of the German Weather Service (mesh size 2.8 and 7 km) reproduced the general flow structure and the mass fluxes toward the Alps within 86%–144% of the observations.


2015 ◽  
Vol 72 (3) ◽  
pp. 984-1009 ◽  
Author(s):  
Yuki Yasuda ◽  
Kaoru Sato ◽  
Norihiko Sugimoto

Abstract The renormalization group equations (RGEs) describing spontaneous inertia–gravity wave (GW) radiation from part of a balanced flow through a quasi resonance that were derived in a companion paper by Yasuda et al. are validated through numerical simulations of the vortex dipole using the Japan Meteorological Agency nonhydrostatic model (JMA-NHM). The RGEs are integrated for two vortical flow fields: the first is the initial condition that does not contain GWs used for the JMA-NHM simulations, and the second is the simulated thirtieth-day field by the JMA-NHM. The theoretically obtained GW distributions in both RGE integrations are consistent with the numerical simulations using the JMA-NHM. This result supports the validity of the RGE theory. GW radiation in the dipole is physically interpreted either as the mountain-wave-like mechanism proposed by McIntyre or as the velocity-variation mechanism proposed by Viúdez. The shear of the large-scale flow likely determines which mechanism is dominant. In addition, the distribution of GW momentum fluxes is examined based on the JMA-NHM simulation data. The GWs propagating upward from the jet have negative momentum fluxes, while those propagating downward have positive ones. The magnitude of momentum fluxes is approximately proportional to the sixth power of the Rossby number between 0.15 and 0.4.


2010 ◽  
Vol 67 (7) ◽  
pp. 2260-2278 ◽  
Author(s):  
Stephen D. Eckermann ◽  
John Lindeman ◽  
Dave Broutman ◽  
Jun Ma ◽  
Zafer Boybeyi

Abstract Fully nonlinear mesoscale model simulations are used to investigate the momentum fluxes of gravity waves that emerge at a “far-field” height of 6 km from steady unsheared flow over both an axisymmetric and elliptical obstacle for nondimensional mountain heights ĥm = Fr−1 in the range 0.1–5, where Fr is the surface Froude number. Fourier- and Hilbert-transform diagnostics of model output yield local estimates of phase-averaged momentum flux, while area integrals of momentum flux quantify the amount of surface pressure drag that translates into far-field gravity waves, referred to here as the “wave drag” component. Estimates of surface and wave drag are compared to parameterization predictions and theory. Surface dynamics transition from linear to high-drag (wave breaking) states at critical inverse Froude numbers Frc−1 predicted to within 10% by transform relations. Wave drag peaks at Frc−1 < ĥm ≲ 2, where for the elliptical obstacle both surface and wave drag vacillate owing to cyclical buildup and breakdown of waves. For the axisymmetric obstacle, this occurs only at ĥm = 1.2. At ĥm ≳ 2–3 vacillation abates and normalized pressure drag assumes a common normalized form for both obstacles that varies approximately as ĥm−1.3. Wave drag in this range asymptotes to a constant absolute value that, despite its theoretical shortcomings, is predicted to within 10%–40% by an analytical relation based on linear clipped-obstacle drag for a Sheppard-based prediction of dividing streamline height. Constant wave drag at ĥm ∼ 2–5 arises despite large variations with ĥm in the three-dimensional morphology of the local wave momentum fluxes. Specific implications of these results for the parameterization of subgrid-scale orographic drag in global climate and weather models are discussed.


2021 ◽  
Author(s):  
Sydney Sroka ◽  
Kerry Emanuel

<p>Since air-sea enthalpy and momentum fluxes control a tropical cyclone’s intensification rate, increasing the accuracy of the associated bulk parameterizations is crucially important for improving forecast skill. Despite the powerful influence that sea spray has on air-sea enthalpy and momentum fluxes, most state-of-the-art tropical cyclone forecast models do not incorporate the microphysics of sea spray evaporation into their boundary layer flux schemes. We present the results from direct numerical simulations of the evaporating sea surface subject to a strong wind forcing to help evaluate the parameterizations of bulk exchange coefficients of momentum and enthalpy. By developing microphysics-based bulk parameterizations, the influence that sea spray exerts on tropical cyclone intensification can be more accurately simulated and intensity forecasts could be improved.</p>


Sign in / Sign up

Export Citation Format

Share Document