scholarly journals Metabolomics of soybean green stem and foliar retention (GSFR) disease using mass spectrometry and molecular networking

2020 ◽  
Vol 34 (S3) ◽  
Author(s):  
Daniele Maria Zanzarin ◽  
Carolina Parcero Hernandes ◽  
Luiza Mariano Leme ◽  
Evandro Silva ◽  
Carla Porto ◽  
...  

mSystems ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Daniela B. B. Trivella ◽  
Rafael de Felicio

ABSTRACT Natural products are the richest source of chemical compounds for drug discovery. Particularly, bacterial secondary metabolites are in the spotlight due to advances in genome sequencing and mining, as well as for the potential of biosynthetic pathway manipulation to awake silent (cryptic) gene clusters under laboratory cultivation. Further progress in compound detection, such as the development of the tandem mass spectrometry (MS/MS) molecular networking approach, has contributed to the discovery of novel bacterial natural products. The latter can be applied directly to bacterial crude extracts for identifying and dereplicating known compounds, therefore assisting the prioritization of extracts containing novel natural products, for example. In our opinion, these three approaches—genome mining, silent pathway induction, and MS-based molecular networking—compose the tripod for modern bacterial natural product discovery and will be discussed in this perspective.



Metabolites ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 407
Author(s):  
Guillermo F. Padilla-González ◽  
Nicholas J. Sadgrove ◽  
Gari V. Ccana-Ccapatinta ◽  
Olga Leuner ◽  
Eloy Fernandez-Cusimamani

Smallanthus sonchifolius (yacon) is an edible tuberous Andean shrub that has been included in the diet of indigenous people since before recorded history. The nutraceutical and medicinal properties of yacon are widely recognized, especially for the improvement of hyperglycemic disorders. However, the chemical diversity of the main bioactive series of caffeic acid esters has not been explored in detail. In this metabolomics study, we applied the latest tools to facilitate the targeted isolation of new caffeic acid esters. Using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), we analyzed extracts from different organs (roots, vascular tissues of the stems, stem epidermis, leaves, bracts, and ray flowers) and followed a feature-based molecular networking approach to characterize the structural diversity of caffeic acid esters and recognize new compounds. The analysis identified three potentially new metabolites, one of them confirmed by isolation and full spectroscopic/spectrometric assignment using nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS), and MS/MS. This metabolite (5-O-caffeoyl-2,7-anhydro-d-glycero-β-d-galacto-oct-2-ulopyranosonic acid), along with eight known caffeic acid esters, was isolated from the roots and stems. Furthermore, based on detailed tandem MS analyses, we suggest that the two isomeric monocaffeoyl-2,7-anhydro-2-octulopyranosonic acids found in yacon can be reliably distinguished based on their characteristic MS2 and MS3 spectra. The outcome of the current study confirms the utility of feature-based molecular networking as a tool for targeted isolation of previously undescribed metabolites and reveals the full diversity of potentially bioactive metabolites from S. sonchifolius.



HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 594b-594
Author(s):  
Geno A. Picchioni ◽  
Steven A. Weinbaum ◽  
Patrick H. Brown

Factors affecting the phloem mobility of foliar-applied B have received little study. The purpose of this experiment was to evaluate foliar retention of B solutions, foliar uptake kinetics, and phloem mobility of foliar-applied B among four tree fruit species. Leaves on current-year shoots of nonbearing 'Red Delicious' apple, 'Bartlett' pear, 'French' prune, and 'Bing' cherry were immersed in 1000 mg/liter B solutions (supplied as 10B-enriched boric acid) in midsummer. Export of the applied label from leaves was monitored between 0 and 24 h, and throughout the following 20 days by ICP-mass spectrometry. Uptake by leaves increased steadily in all species between 0 and 24 h, and reached 80% to 95% of the applied quantity within 24 h. By 24 h, 62% to 75% of the applied label, depending on species, had been exported from the treated leaves. Apple leaves retained, absorbed, and exported over twice the amount of labelled B as prune and pear leaves, and nearly four times the amount of cherry leaves. Foliar retention largely controlled the capacity for uptake and export.



Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 791
Author(s):  
Fabian Hammerle ◽  
Luis Quirós-Guerrero ◽  
Adriano Rutz ◽  
Jean-Luc Wolfender ◽  
Harald Schöbel ◽  
...  

Fungi have developed a wide array of defense strategies to overcome mechanical injuries and pathogen infections. Recently, photoactivity has been discovered by showing that pigments isolated from Cortinarius uliginosus produce singlet oxygen under irradiation. To test if this phenomenon is limited to dermocyboid Cortinarii, six colourful Cortinarius species belonging to different classical subgenera (i.e., Dermocybe, Leprocybe, Myxacium, Phlegmacium, and Telamonia) were investigated. Fungal extracts were explored by the combination of in vitro photobiological methods, UHPLC coupled to high-resolution tandem mass spectrometry (UHPLC-HRMS2), feature-based molecular networking (FBMN), and metabolite dereplication techniques. The fungi C. rubrophyllus (Dermocybe) and C. xanthophyllus (Phlegmacium) exhibited promising photobiological activity in a low concentration range (1–7 µg/mL). Using UHPLC-HRMS2-based metabolomic tools, the underlying photoactive principle was investigated. Several monomeric and dimeric anthraquinones were annotated as compounds responsible for the photoactivity. Furthermore, the results showed that light-induced activity is not restricted to a single subgenus, but rather is a trait of Cortinarius species of different phylogenetic lineages and is linked to the presence of fungal anthraquinones. This study highlights the genus Cortinarius as a promising source for novel photopharmaceuticals. Additionally, we showed that putative dereplication of natural photosensitizers can be done by FBMN.



Sign in / Sign up

Export Citation Format

Share Document