An automatic parameter calibration method for the SWAT model in runoff simulation

2020 ◽  
Vol 36 (7) ◽  
pp. 1321-1333
Author(s):  
Yongzhi Wang ◽  
Sijing Zhu ◽  
Liu Yuan ◽  
Rui Deng
Author(s):  
Dongying Yi ◽  
Yue Xu ◽  
Nan Wang ◽  
Xiaoyi Ma

The primary approach to realizing long-term runoff prediction involves combining a hydrological model with general circulation model. Previous studies on the Source area of the Yellow River were all based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) data sets with defects in physical mechanisms. In this paper, the Beijing Climate Center Climate System Model (BCC-CSM2-MR) of CMIP6, which proved to perform well in arid and semi-arid regions, will be used to drive the Soil & Water Assessment Tool (SWAT) model and evaluate its applicability in runoff simulation at Tang Nahai Hydrological Station from 2011 to 2019. The occurrence of the extreme value of runoff, its change trend, and the year of abrupt change of runoff in the four Shared Socio-economic Pathway (SSP) scenarios (SSP1-2.6, 2-4.5, 3-7.0, and 5-8.5) during 2021-2100 were analyzed. The results show that: (1) the runoff simulation evaluation index of SWAT driven by BCC-CSM2-MR in the research area from 2011 to 2019 is excellent, and the runoff simulation in the future is reliable and effective. (2) only the average annual runoff in scenario 5-8.5 (708.5m /s) from 2021 to 2100 was significantly higher than that in 2011-2019. Other scenarios are close to or less than the annual runoff observed. Most importantly, the maximum and minimum annual runoff values under the four scenarios all occurred during 2060-2080, so the attribution analysis of runoff extremum during 2060-2080 is worth further study. (3) it is necessary to evaluate whether the existing reservoirs and hydropower stations in the Yellow River basin can reasonably regulate and utilize the annual runoff under scenario 5-8.5.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1803
Author(s):  
Xiaoli Chen ◽  
Guoru Huang

The assessment of various precipitation products’ performances in extreme climatic conditions has become a topic of interest. However, little attention has been paid to the hydrological substitutability of these products. The objective of this study is to explore the performance of the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) product in the Feilaixia catchment, China. To assess its applicability in extreme consecutive climates, several statistical indices are adopted to evaluate the TMPA performance both qualitatively and quantitatively. The Cox–Stuart test is used to investigate extreme climate trends. The Soil and Water Assessment Tool (SWAT) model is used to test the TMPA hydrological substitutability via three scenarios of runoff simulation. The results demonstrate that the overall TMPA performance is acceptable, except at high-latitudes and locations where the terrain changes greatly. Moreover, the accuracy of the SWAT model is high both in the semi-substitution and full-substitution scenarios. Based on the results, the TMPA product is a useful substitute for the gauged precipitation in obtaining acceptable hydrologic process information in areas where gauged sites are sparse or non-existent. The TMPA product is satisfactory in predicting the runoff process. Overall, it must be used with caution, especially at high latitudes and altitudes.


2021 ◽  
Author(s):  
Wenjun Su ◽  
Junkang Guo ◽  
Zhigang Liu ◽  
Kang Jia

Abstract Rotary-laser automatic theodolite (R-LAT) system is a distributed large-scale metrology system, which provides parallel measurement in scalable measurement room without obvious precision losing. Each of R-LAT emits two nonparallel laser planes to scan the measurement space via evenly rotation, while the photoelectric sensors receive these laser planes signals and performs the coordinate calculation based on triangulation. The accurate geometric parameters of the two laser planes plays a crucial role in maintaining the measurement precision of R-LAT system. Practically, the geometry of the two laser plane, which is termed as intrinsic parameters, is unknown after assembled. Therefore, how to figure out the accurate intrinsic parameters of each R-LAT is a fundamental question for the application of R-LAT system. This paper proposed an easily operated intrinsic parameter calibration method for R-LAT system with adopting coordinate measurement machine. The mathematic model of laser planes and the observing equation group of R-LAT are established. Then, the intrinsic calibration is formulated as a nonlinear least square problem that minimize the sum of deviations of target points and laser planes, and the ascertain of its initial guess is introduced. At last, experience is performed to verify the effectiveness of this method, and simulations are carried out to investigate the influence of the target point configuration on the accuracy of intrinsic parameters.


2019 ◽  
Vol 11 (4) ◽  
pp. 1811-1828
Author(s):  
Armin Ahmadi ◽  
Amirhosein Aghakhani Afshar ◽  
Vahid Nourani ◽  
Mohsen Pourreza-Bilondi ◽  
A. A. Besalatpour

Abstract The river situation in a dry or semi-dry area is extremely affected by climate change and precipitation patterns. In this study, the impact of climate alteration on runoff in Kashafrood River Basin (KRB) in Iran was investigated using the Soil and Water Assessment Tool (SWAT) in historical and three future period times. The runoff was studied by MIROC-ESM and GFDL-ESM2G models as the outputs of general circulation models (GCMs) in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP8.5). The DiffeRential Evolution Adaptive Metropolis (DREAM-ZS) was used to calibrate the hydrological model parameters in different sub-basins. Using DREAM-ZS algorithm, realistic values were obtained for the parameters related to runoff simulation in the SWAT model. In this area, results show that runoff in GFDL-ESM2G in both RCPs (2.6 and 8.5) in comparing future periods with the historical period is increased about 232–383% and in MIROC-ESM tends to increase around 87–292%. Furthermore, GFDL-ESM2G compared to MIROC-ESM in RCP2.6 (RCP8.5) in near, intermediate, and far future periods shows that the value of runoff increases 59.6% (23.0%), 100.2% (35.1%), and 42.5% (65.3%), respectively.


Author(s):  
Yuejian Wang ◽  
Guang Yang ◽  
Xinchen Gu ◽  
Xinlin He ◽  
Yongli Gao ◽  
...  

Abstract Precise simulations of hydrological processes under the influence of climate change and human activities have special significance in arid basins. During the past 60 years, the annual average temperature and precipitation at the northern foothills of the Tianshan Mountains have increased at the rates of 0.035 °C/year and 0.881 mm/year, respectively. Rising temperatures will change the temporal and spatial distributions and forms of precipitation, accelerate glacier retreat, melt snow on high mountains, cause the degeneration of frozen soil, and change the runoff composition in the Tianshan area. In this work, the CMADS (China Meteorological Assimilation Driving Dataset for the SWAT model) was combined with the SWAT (Soil and Water Assessment Tool) model to simulate runoff in the upper reaches of the Jing River and Bo River Basins in the Tianshan area. The results were as follows. (1) On the monthly scale, the average Nash–Sutcliffe efficiency (NSE) coefficients of the calibration period in the Wenquan and Jinghe–Shankou hydrological stations were 0.79 and 0.87, respectively, and the NSE coefficients of validation period were 0.71 and 0.82, respectively. On the daily scale, the NSE coefficients of the two hydrological stations were between 0.69 and 0.77. The simulation results were considered to be ideal on the monthly and daily scales. (2) Under different climate scenarios and land-use patterns, the cultivated land in the basin leads to the reduction of runoff, and the grassland and woodland stabilise the river flood season. Lakes and wetlands, which can reduce the flow in the flood season and provide water for rivers in the dry season, are very important for runoff regulation. Compared with the traditional meteorological stations, CMADS demonstrates good representativeness and reliability in the Jinghe River and Bohe River Basins under different climate and land-use scenarios, greatly improving the runoff simulation ability.


Sign in / Sign up

Export Citation Format

Share Document