12-GHz Thin-Film Transistors on Transferrable Silicon Nanomembranes for High-Performance Flexible Electronics

Small ◽  
2010 ◽  
Vol 6 (22) ◽  
pp. 2553-2557 ◽  
Author(s):  
Lei Sun ◽  
Guoxuan Qin ◽  
Jung-Hun Seo ◽  
George K. Celler ◽  
Weidong Zhou ◽  
...  
Small ◽  
2010 ◽  
Vol 6 (22) ◽  
pp. 2473-2473 ◽  
Author(s):  
Lei Sun ◽  
Guoxuan Qin ◽  
Jung-Hun Seo ◽  
George K. Celler ◽  
Weidong Zhou ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (30) ◽  
pp. 16788-16799 ◽  
Author(s):  
Li Zhu ◽  
Gang He ◽  
Jianguo Lv ◽  
Elvira Fortunato ◽  
Rodrigo Martins

Solution based deposition has been recently considered as a viable option for low-cost flexible electronics.


2010 ◽  
Vol 130 (2) ◽  
pp. 161-166
Author(s):  
Yoshinori Ishikawa ◽  
Yasuo Wada ◽  
Toru Toyabe ◽  
Ken Tsutsui

Author(s):  
Stephen R. Forrest

Organic electronics is a platform for very low cost and high performance optoelectronic and electronic devices that cover large areas, are lightweight, and can be both flexible and conformable to irregularly shaped surfaces such as foldable smart phones. Organics are at the core of the global organic light emitting device (OLED) display industry, and also having use in efficient lighting sources, solar cells, and thin film transistors useful in medical and a range of other sensing, memory and logic applications. This book introduces the theoretical foundations and practical realization of devices in organic electronics. It is a product of both one and two semester courses that have been taught over a period of more than two decades. The target audiences are students at all levels of graduate studies, highly motivated senior undergraduates, and practicing engineers and scientists. The book is divided into two sections. Part I, Foundations, lays down the fundamental principles of the field of organic electronics. It is assumed that the reader has an elementary knowledge of quantum mechanics, and electricity and magnetism. Background knowledge of organic chemistry is not required. Part II, Applications, focuses on organic electronic devices. It begins with a discussion of organic thin film deposition and patterning, followed by chapters on organic light emitters, detectors, and thin film transistors. The last chapter describes several devices and phenomena that are not covered in the previous chapters, since they lie outside of the current mainstream of the field, but are nevertheless important.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1188
Author(s):  
Ivan Rodrigo Kaufmann ◽  
Onur Zerey ◽  
Thorsten Meyers ◽  
Julia Reker ◽  
Fábio Vidor ◽  
...  

Zinc oxide nanoparticles (ZnO NP) used for the channel region in inverted coplanar setup in Thin Film Transistors (TFT) were the focus of this study. The regions between the source electrode and the ZnO NP and the drain electrode were under investigation as they produce a Schottky barrier in metal-semiconductor interfaces. A more general Thermionic emission theory must be evaluated: one that considers both metal/semiconductor interfaces (MSM structures). Aluminum, gold, and nickel were used as metallization layers for source and drain electrodes. An organic-inorganic nanocomposite was used as a gate dielectric. The TFTs transfer and output characteristics curves were extracted, and a numerical computational program was used for fitting the data; hence information about Schottky Barrier Height (SBH) and ideality factors for each TFT could be estimated. The nickel metallization appears with the lowest SBH among the metals investigated. For this metal and for higher drain-to-source voltages, the SBH tended to converge to some value around 0.3 eV. The developed fitting method showed good fitting accuracy even when the metallization produced different SBH in each metal-semiconductor interface, as was the case for gold metallization. The Schottky effect is also present and was studied when the drain-to-source voltages and/or the gate voltage were increased.


2008 ◽  
Vol 18 (39) ◽  
pp. 4698 ◽  
Author(s):  
Myoung-Chul Um ◽  
Jeonghun Kwak ◽  
Jung-Pyo Hong ◽  
Jihoon Kang ◽  
Do Yeung Yoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document