Integration Process for Self-aligned Sub-µm Thin-Film Transistors for Flexible Electronics

Author(s):  
Julia Reker ◽  
Thorsten Meyers ◽  
Fabio F. Vidor ◽  
Trudi-Heleen Joubert ◽  
Ulrich Hilleringmann
Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1188
Author(s):  
Ivan Rodrigo Kaufmann ◽  
Onur Zerey ◽  
Thorsten Meyers ◽  
Julia Reker ◽  
Fábio Vidor ◽  
...  

Zinc oxide nanoparticles (ZnO NP) used for the channel region in inverted coplanar setup in Thin Film Transistors (TFT) were the focus of this study. The regions between the source electrode and the ZnO NP and the drain electrode were under investigation as they produce a Schottky barrier in metal-semiconductor interfaces. A more general Thermionic emission theory must be evaluated: one that considers both metal/semiconductor interfaces (MSM structures). Aluminum, gold, and nickel were used as metallization layers for source and drain electrodes. An organic-inorganic nanocomposite was used as a gate dielectric. The TFTs transfer and output characteristics curves were extracted, and a numerical computational program was used for fitting the data; hence information about Schottky Barrier Height (SBH) and ideality factors for each TFT could be estimated. The nickel metallization appears with the lowest SBH among the metals investigated. For this metal and for higher drain-to-source voltages, the SBH tended to converge to some value around 0.3 eV. The developed fitting method showed good fitting accuracy even when the metallization produced different SBH in each metal-semiconductor interface, as was the case for gold metallization. The Schottky effect is also present and was studied when the drain-to-source voltages and/or the gate voltage were increased.


2018 ◽  
Vol 4 (7) ◽  
pp. 1800032 ◽  
Author(s):  
Cristina Fernandes ◽  
Ana Santa ◽  
Ângelo Santos ◽  
Pydi Bahubalindruni ◽  
Jonas Deuermeier ◽  
...  

2011 ◽  
Vol 11 (6) ◽  
pp. 5532-5538 ◽  
Author(s):  
M. A. Quevedo-Lopez ◽  
W. T. Wondmagegn ◽  
H. N. Alshareef ◽  
R. Ramirez-Bon ◽  
B. E. Gnade

2021 ◽  
Vol 16 (2) ◽  
pp. 1-11
Author(s):  
José Enrique Eirez Izquierdo ◽  
José Diogo da Silva Oliveira ◽  
Vinicius Augusto Machado Nogueira ◽  
Dennis Cabrera García ◽  
Marco Roberto Cavallari ◽  
...  

This work is focused on the bias stress (BS) effects in Organic Thin-Film Transistors (OTFTs) from poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) on both highly-doped Si and glass substrates. While the former had a thermally-grown SiO2 dielectric, the latter demanded an alternative dielectric that should be capable to withstand bottom contact lithography, as well as semiconducting thin-film deposition. In addition, it should represent one more step towards flexible electronics. In order to do that, poly(4-vinylphenol) (PVP) was blended to poly(melamine-co-formaldehyde) methylated (PMF). OTFTs on glass with a cross-linked polymer dielectric had a charge carrier mobility (μ) of 4.0x10-4 cm2/Vs, threshold voltage (VT) of 18 V, current modulation (ION/OFF) higher than 1x102, and subthreshold slope (SS) of -7.7 V/dec. A negative BS shifted VT towards negative values and produced an increase in ION/OFF. A positive BS, on the other hand, produced the opposite effect only for OTFTs on Si. This is believed to be due to a higher trapping at the PVP:PMF interface with PBTTT-C14. Modeling the device current along time by a stretched exponential provided shorter time constants of ca. 105 s and higher exponents of 0.7–0.9 for devices on glass. Due to the presence of increased BS effects, the application of organic TFTs based on PVP:PMF as flexible sensors will require compensating circuits, lower voltages or less measurements in time. Alternatively, BS effects could be reduced by a dielectric surface treatment.


2014 ◽  
Vol E97.C (4) ◽  
pp. 227-237
Author(s):  
Ryoichi ISHIHARA ◽  
Jin ZHANG ◽  
Miki TRIFUNOVIC ◽  
Jaber DERAKHSHANDEH ◽  
Negin GOLSHANI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document