Interface‐Strengthened Polymer Nanocomposites with Reduced Dielectric Relaxation Exhibit High Energy Density at Elevated Temperatures Utilizing a Facile Dual Crosslinked Network

Small ◽  
2020 ◽  
Vol 16 (22) ◽  
pp. 2000714 ◽  
Author(s):  
Jie Liu ◽  
Zhonghui Shen ◽  
Wenhan Xu ◽  
Yu Zhang ◽  
Xiaoshi Qian ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2942
Author(s):  
Bhausaheb V. Tawade ◽  
Ikeoluwa E. Apata ◽  
Nihar Pradhan ◽  
Alamgir Karim ◽  
Dharmaraj Raghavan

The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.


2017 ◽  
Vol 9 (4) ◽  
pp. 4024-4033 ◽  
Author(s):  
Zhongbin Pan ◽  
Lingmin Yao ◽  
Jiwei Zhai ◽  
Dezhou Fu ◽  
Bo Shen ◽  
...  

2016 ◽  
Vol 113 (36) ◽  
pp. 9995-10000 ◽  
Author(s):  
Qi Li ◽  
Feihua Liu ◽  
Tiannan Yang ◽  
Matthew R. Gadinski ◽  
Guangzu Zhang ◽  
...  

The demand for a new generation of high-temperature dielectric materials toward capacitive energy storage has been driven by the rise of high-power applications such as electric vehicles, aircraft, and pulsed power systems where the power electronics are exposed to elevated temperatures. Polymer dielectrics are characterized by being lightweight, and their scalability, mechanical flexibility, high dielectric strength, and great reliability, but they are limited to relatively low operating temperatures. The existing polymer nanocomposite-based dielectrics with a limited energy density at high temperatures also present a major barrier to achieving significant reductions in size and weight of energy devices. Here we report the sandwich structures as an efficient route to high-temperature dielectric polymer nanocomposites that simultaneously possess high dielectric constant and low dielectric loss. In contrast to the conventional single-layer configuration, the rationally designed sandwich-structured polymer nanocomposites are capable of integrating the complementary properties of spatially organized multicomponents in a synergistic fashion to raise dielectric constant, and subsequently greatly improve discharged energy densities while retaining low loss and high charge–discharge efficiency at elevated temperatures. At 150 °C and 200 MV m−1, an operating condition toward electric vehicle applications, the sandwich-structured polymer nanocomposites outperform the state-of-the-art polymer-based dielectrics in terms of energy density, power density, charge–discharge efficiency, and cyclability. The excellent dielectric and capacitive properties of the polymer nanocomposites may pave a way for widespread applications in modern electronics and power modules where harsh operating conditions are present.


2019 ◽  
Vol 7 (28) ◽  
pp. 16748-16760 ◽  
Author(s):  
Cheng Chi ◽  
Yang Li ◽  
Dezhao Li ◽  
He Huang ◽  
Qi Wang ◽  
...  

The incorporation of polymer solid electrolytes into GO/CNT electrodes significantly improves interfacial contact, boosting the performance of the solvent-free flexible supercapacitor.


2020 ◽  
Vol 6 (3) ◽  
pp. 573-581 ◽  
Author(s):  
Zhong-Hui Shen ◽  
Yang Shen ◽  
Xiao-Xing Cheng ◽  
Han-Xing Liu ◽  
Long-Qing Chen ◽  
...  

2020 ◽  
Vol 8 (14) ◽  
pp. 6576-6585 ◽  
Author(s):  
Yushu Li ◽  
Yao Zhou ◽  
Yujie Zhu ◽  
Sang Cheng ◽  
Chao Yuan ◽  
...  

A hierarchical nanostructure as a new design of nanofillers is demonstrated for high-energy-density dielectric polymer nanocomposites.


2016 ◽  
Vol 4 (21) ◽  
pp. 8359-8365 ◽  
Author(s):  
Yang Shen ◽  
Dashan Shen ◽  
Xin Zhang ◽  
Jianyong Jiang ◽  
Zhenkang Dan ◽  
...  

High energy density at low electric field is achieved for polymer nanocomposites by modulating topological structure.


2011 ◽  
Vol 1325 ◽  
Author(s):  
Joel E. Schmidt ◽  
Douglas S. Dudis ◽  
Douglas J. Miller

ABSTRACTPhase change materials (PCMs) often have higher specific energy storage capacities at elevated temperatures. Thermal management (TM) systems capable of handling high heat fluxes in the temperature range from 20–100°C are necessary but lacking. State of the art PCMs in this temperature range are usually paraffin waxes with energy densities on the order of a few hundred kJ/kg or ice slurries with energy densities of the same magnitude. However, for applications where system weight and size are limited, it is necessary to improve this energy density by at least an order of magnitude. The compound ammonium carbamate, [NH4][H2NCOO], is a solid formed from the reaction of ammonia and carbon dioxide which endothermically decomposes back to CO2 and NH3 in the temperature range 20-100°C with an enthalpy of decomposition of ∼2,000 kJ/kg. Various methods to use this material for TM of low-grade, high-flux heat have been evaluated including: bare powder, thermally conductive carbon foams, thermally conductive metal foams, hydrocarbon based slurries, and a slurry in ethylene glycol or propylene glycol. A slurry in glycol is a promising system medium for enhancing heat and mass transfer for TM. Progress on material and system characterization is reported.


Sign in / Sign up

Export Citation Format

Share Document