Diffusion Behaviors of Integrins in Single Cells Altered by Epithelial to Mesenchymal Transition

Small ◽  
2021 ◽  
pp. 2106498
Author(s):  
Jing‐Wen Yuan ◽  
Yu‐Ning Zhang ◽  
Yu‐Ru Liu ◽  
Wei Li ◽  
Shuo‐Xing Dou ◽  
...  
2019 ◽  
Vol 8 (5) ◽  
pp. 646 ◽  
Author(s):  
Gray W. Pearson

Epithelial-to-mesenchymal transition (EMT) programs contribute to the acquisition of invasive properties that are essential for metastasis. It is well established that EMT programs alter cell state and promote invasive behavior. This review discusses how rather than following one specific program, EMT states are diverse in their regulation and invasive properties. Analysis across a spectrum of models using a combination of approaches has revealed how unique features of distinct EMT programs dictate whether tumor cells invade as single cells or collectively as cohesive groups of cells. It has also been shown that the mode of collective invasion is determined by the nature of the EMT, with cells in a trailblazer-type EMT state being capable of initiating collective invasion, whereas cells that have undergone an opportunist-type EMT are dependent on extrinsic factors to invade. In addition to altering cell intrinsic properties, EMT programs can influence invasion through non-cell autonomous mechanisms. Analysis of tumor subpopulations has demonstrated how EMT-induced cells can drive the invasion of sibling epithelial populations through paracrine signaling and remodeling of the microenvironment. Importantly, the variation in invasive properties controlled by EMT programs influences the kinetics and location of metastasis.


2014 ◽  
Author(s):  
David Andrew Turner ◽  
Pau Rué ◽  
Jonathan P Mackenzie ◽  
Eleanor Davies ◽  
Alfonso Martinez Arias

The formation of the Primitive Streak is the first visible sign of gastrulation, the process by which the three germ layers are formed from a single epithelium during early development. Embryonic Stem Cells (ESCs) provide a good system to understand the molecular and cellular events associated with these processes. Previous work, both in embryos and in culture, has shown how converging signals from both Nodal/TGFβR and Wnt/β-Catenin signalling pathways specify cells to adopt a Primitive Streak like fate and direct them to undertake an epithelial to mesenchymal transition (EMT). However, many of these approaches have relied on genetic analyses without taking into account the temporal progression of events within single cells. In addition, it is still unclear as to what extent events in the embryo are able to be reproduced in culture. Here, we combine flow-cytometry and a quantitative live single-cell imaging approach to demonstrate how the controlled differentiation of mouse ESCs (mESCs) towards a Primitive Streak fate in culture results in cells displaying many of the characteristics observed during early mouse development including transient Brachyury expression, EMT and increased motility. We also find that the EMT initiates the process, and this is both fuelled and terminated by the action of Bra, whose expression is dependent on the EMT and β-Catenin activity. As a consequence of our analysis, we propose that a major output of Brachyury expression is in controlling the velocity of the cells that are transiting out of the Primitive Streak.


2019 ◽  
Vol 63 (5) ◽  
pp. 579-594 ◽  
Author(s):  
Guillem Lambies ◽  
Antonio García de Herreros ◽  
Víctor M. Díaz

Abstract Cell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.


Sign in / Sign up

Export Citation Format

Share Document